
Introduction to Dependent Types

Chris Warburton

Monday 19th August, 2013

Outline

Motivation

Mechanics

Examples

Discussion

Why Types?

I Programmers make mistakes

I Software evolves, speci�cations drift

I Enforce interfaces
I Esp. for libraries and higher-order functions

I Keep track of tedious properties
I Escaping, over�ow, resources (memory, �les, sockets),

etc.

I Expose structure and properties of problems and
algorithms

Why not tests?

I Types and tests are orthogonal
I We should use both!

I Tests look for bugs in a depth-�rst way
I Check detailed properties of speci�c inputs

I Types look for bugs in a breadth-�rst way
I Check limited properties of every input

Why Dependent Types?

I Allow arbitrary types
I Almost Turing-complete

I Simple foundation
I Extends Lambda Calculus

I Seamlessly combines programming and theorem-proving
I Curry-Howard: Types are theorems, programs are their

proofs

I Incremental
I Focus on properties we care about (eg. code injection,

time-bounds)

Type Systems

I Assigns at least one type to every value
I Dynamic types are just large sums

I Can only restrict code
I �I can already do that in $LANG!�

I Purely syntactic
I 1 + 1 != 2

I Only exist at compile-time

I Consistent
I Necessarily incomplete: Some correct programs won't

type-check

Dependent Type Systems

I One language
I Types are �rst-class values, just like everything else
I We can compute our types as part of our program

I Types can depend on values:
I Dependent functions

id : (t : Type) -> t -> t

I Dependent pairs:

(t : Type ** t)

Types Are Terms

intOrChar : Bool -> Type

intOrChar True = Int

intOrChar False = Char

data (=) : a -> b -> Type where

refl : (x : a) -> (x = x)

unitTestCheck : (allUnitTestsPass = True)

unitTestCheck = refl allUnitTestsPass

Dependent Functions

I Result type can contain argument value

I No speci�c values, so use universal quanti�cation forall

Dependent Pairs

I Second value's type can contain �rst value

I Each pair can di�er, so we get existential quanti�cation
there exists

Demo

Applications

I Theorem proving (esp. Coq, Agda)

I Tricky datastructures/algorithms

I Security
I Handling malicious input (eg. PDF)
I Proof-carrying code

I Inductive programming

Drawbacks

I Consistent type systems must be total
I De�ned for all inputs
I Must terminate or co-terminate

I Library problem: damages code re-use

I Verbose
I Dependent pattern-matching, views, etc.

On-going Research

I Library problem
I Ornaments
I Observational equality
I Higher-dimensional Type Theory

I Automation
I Theorem proving
I Type inference
I Termination checking

I UI
I More informative types can inform our IDEs

Summary

I Pros:
I Veri�cations of arbitrary properties
I Incremental safety
I Theorem-proving

I Cons:
I Verbose
I Totality-checking
I Limited code re-use

Thanks

Questions?

	Motivation
	Mechanics
	Examples
	Discussion

