
Simulating a Particle Storage Ring

060196497

May 27, 2009

PHY342

1

1 Simulation

1.1 Description

The physical system being simulated is that of a magnetic storage ring for par-
ticles, such as the Stanford Positron Electron Accelerating Ring (SPEAR). In a
storage ring there is a toroidal cavity containing a strong vacuum, surrounded
by a series of magnets (dipole, quadrupole, etc.), or more atypically electric
poles. These create an electromagnetic field inside the ring, which is used to in-
fluence the path of charged particles in order to keep them orbiting in a narrow
ring. The particles are non-interacting and their spin is neglected, as modelling
these properties has been shown to be of little utility over non-interacting parti-
cles, whilst introducing more complexity and overhead according to Banford [1].
The full derivation of the mechanics is given in Appendix A, producing matrices
to transform each particle’s position and divergence between one infinitesimal
section of the ring to the next.

Since machines which are capable of infinite computation in a finite time
are still theoretical [2], the true results of integrating around the ring cannot be
obtained numerically, thus the infinitesimal size dz is replaced with a small, but
finite, size, giving approximate results.

The rings being simulated are given fixed properties at creation, such as field
index, circumference/radius and beam width and height, as well as properties for
their simulation such as the number of sections to divide the ring into (and hence
the size of dz), the number of particles to contain and the number of revolutions
to perform. The particles are created using a Monte Carlo technique, giving a
uniform distribution across the width (±xmax) and height (±ymax) of the beam,
as well as uniformly distributed divergences between the maximum/minimum
divergences radially and vertically (±x′max and ±y′max), defined as xmax

r0
and

ymax

r0
respectively (where r0 is the radius from the centre of the ring to the

centre of the beam). These are then inserted into the ring at an arbitrary
section and the simulation is begun.

Whilst these values only appear once in the code, and are thus easily recon-
figurable, in order to reduce the number of variables being considered the storage
rings simulated have a beam width and height of 0.06m (xmax = ymax = 0.03)
and a circumference of 2m (∴ r0 = 2

2π = 0.318). The number of particles,
number of revolutions, number of sections and field index were varied.

1.2 Results

1.2.1 Field Index

The first property investigated was the variation in acceptance (equal to the
fraction of remaining particles) as the field index n was varied from 0 < n < 1 for
20 rings of 40 sections each, containing 10,000 particles making 50 revolutions.
Figure 1 shows the results of these simulations.

The shape obtained is a combination of the x and y acceptance, shown in fig-
ure 2 (slight deviations between the green line of 1−(x acceptance+ y acceptance)

2

Figure 1: Acceptance against field index (10,000 particles)

Figure 2: Vertical and radial acceptance components (10,000 particles)

3

and the total acceptance from figure 1 are due to particles which escape in both
the x and y directions within a single step).

The symmetric shape of the total acceptance and the complementary shapes
of the x and y acceptances can be explained by considering the transformation
matrix which produced them (see Appendix A for its derivation)

cos
(√

1− ndzr0
)

r0√
1−n sin

(√
1− ndzr0

)
0 0

−
√

1−n
r0

sin
(√

1− ndzr0
)

cos
(√

1− ndzr0
)

0 0

0 0 cos
(√

ndzr0

)
r0√
n

sin
(√

ndzr0

)
0 0 −

√
n
r0

sin
(√

ndzr0

)
cos
(√

ndzr0

)

Here the dependency on the field index is clear. Taking α ≡ 1−n and β ≡ n

this becomes
cos
(√

αdzr0

)
r0√
α

sin
(√

αdzr0

)
0 0

−
√
α
r0

sin
(√

αdzr0

)
cos
(√

αdzr0

)
0 0

0 0 cos
(√

β dzr0

)
r0√
β

sin
(√

β dzr0

)
0 0 −

√
β
r0

sin
(√

β dzr0

)
cos
(√

β dzr0

)

With this notation the similarity of the radial transformation (top left) and

the vertical transformation (bottom right) is clear as α and β appear in exactly
the same form. In the interval taken, 0 < n < 1, the values of α and β are
reflections of each other about n = 0.5.

1.2.2 Particle Number

The top graph of figure 3 superimposes similar results to figure 1, but for sim-
ulations of 10, 100, 1000 and 10000 particles, showing a convergence as the
effect of each particle on the result is reduced. This convergence is shown more
quantitively in the lower graph, which only takes the acceptance when n = 0.5,
and extends the final acceptance value of 0.307 (for 11,000 particles) across the
graph for comparison. This result is to be expected, since the particles are non-
interacting and thus the only difference between the simulations is the average
approaching the expected result (known as the “Law of large numbers” [3]).

1.2.3 Rotations and Steps Taken

Next to be considered is the number of rotations the particles make around the
ring, and whether travelling further reduces the number of particles remaining.
The effect can be seen in figure 4, where no dependency is observed. This is
due to the simple harmonic motion which the particles follow (see Appendix
A), causing those in unmaintainable orbits to escape in their first oscillation as
they reach maximum displacement. Those remaining are oscillating within the

4

Figure 3: Acceptance converging for larger particle numbers

5

Figure 4: Acceptance variation with rotations made

confines of the beam, and thus can continue to do so for a prolonged period. A
closer inspection of particle losses as they orbit their rings is given in figure 5,
where the individual sections are considered rather than full rotations (which
occur at every vertical line). The majority of particles which escape do so within
the first rotation, whilst figure 6 shows the path of a particle traced from the
start of the simulation until it escaped the ring, confirming that the simple
harmonic behaviour is the cause. In the plot “particle 1” oscillates well within
the beam width and height, whilst “particle 2” exits the beam and escapes after
traversing 14 sections.

2 Implementation

2.1 Platform choice

To implement the simulation requires an assessment of development options.
Whilst all notable programming languages are Turing complete, and thus equiv-
alent, this does not imply that a direct translation between all languages is pos-
sible. Where it is not, equivalence can only be achieved by emulation, writing
a Turing machine within the target language which accepts as input the source
language. This technique of emulation allows ever more sophisticated Turing
machines to be constructed, capable of accepting more complex and structured
input.

In hardware this allows different silicon circuits to emulate standard hard-
ware architectures, such as ARM and POWER, whilst in software it allows

6

Figure 5: Remaining particles per section (40 sections per rotation)

Figure 6: x and y paths for two sample particles (horizontal lines are ±xmax
and ±ymax)

7

implementation of higher-level languages such as C and FORTRAN by generat-
ing an equivalent, yet much less comprehensible, machine code emulation of the
more abstract code. More abstract languages, such as Java, Ruby and Python,
can be built by emulating an appropriate machine in lower level language like
C (eg. CPython) or machine code (eg. a compiler generated by PyPy).

These “high level” languages, as opposed to the “low level” languages which
are more similar to those of computer circuitry, are more flexible by definition
(low level languages are a subset of high level languages), and are thus more ap-
propriate for representing a wide range of algorithms since any data structures,
control flow, behaviour and syntax can be created specifically to suit the prob-
lem being addressed. For example, languages which allow operator overloading
can use regular multiplication syntax (for example a=b*c) to represent other
operations such as matrix multiplication, and language support for linked lists
and tail recursion can often reduce boilerplate significantly. The disadvantage of
high level languages is the performance cost paid by the emulation. Each level
of abstraction implements a Turing machine, translating one instruction set into
a simpler one in a general way, thus growing the number of operations at each
stage and losing efficiency due to the generality of the translation. For example
a terse Python program will generate a large amount of CPython bytecode,
which in turn will call an even larger number of C instructions, which sends
an even larger number of machine instructions. Similarly a program written in
POWER machine code will not perform as well in a POWER emulator (for ex-
ample PearPC) as opposed to a real POWER machine (for example Microsoft’s
XBox 360).

Considering the advantages and disadvantages of high level languages, it
was decided that the clarity, modularity and compact nature inherent to high
level code, making its correctness simpler to verify, outweighed the performance
losses associated. The possible candidates decided upon were C, C++, Java,
FORTRAN, Python, Haskell and Erlang. The merits of each are discussed
below.

2.1.1 C

C is a statically typed, structured programming language which is highly portable
(for example, the GNU Compiler Collection alone supports over 50 machine ar-
chitectures) and has been the subject of optimisation experiments for decades.
Although it has this pedigree, as well as an extensive collection of libraries, ex-
amples and a large community following, C has numerous disadvantages which
made it undesirable for this project.

Firstly the sophistication of data structures afforded to a C program is
severely limited. C contains a few arbitrary numerical types, such as “int”,
“float” and “char”, along the lines of the IEEE 754 standard, which are built in
to the language implementation and unchangable. Adding types is achieved by
enumerating values for that type, automatically assigning each possible value an
integer number (which can cause headaches later as they are indistinguishable
from non-enumerating integers). This inflexibility extends to C’s type system,

8

which assigns a type to each variable given in the code, forcing the declaration of
that type by the developer. New data structures must be constructed through
the use of “structs”, unordered mappings of key/value pairs, and through fixed-
length, typed arrays. More complex typing systems can be used (eg. GObject),
but these are essentially emulations of C++.

The typing of each variable comes from the minimalist memory model of
C, where memory is treated as an array of addressable bytes. Each variable
has a pointer specifying the memory location at which its storage begins, and
a type which allows determination of the size (and thus end) of the storage.
Memory banging in this way is prevalent throughout C, often being the only
way to achieve what other languages have built in. For example only a single
variable of a built-in type can be returned from a C function, thus for anything
more complex pointers are used to find the location and the memory is altered
globally. With these severe restrictions, and the hacks and boilerplate required
to work around them, C is not the best candidate for this simulation.

2.1.2 C++

C++ is very similar to C, although it has an improved type system built in.
This type system is a primitive form of Object Oriented programming, with
objects being wrappers around collections of the built in types, other objects
and functions, just like a struct. The difference comes through the class system
of C++, which groups the behaviour of objects in to classes approaching the
level of built in types, but still just remaining a wrapper.

Whilst better than C for this project, C++ still suffers from most of C’s
restrictions and requires even more boilerplate to implement an algorithm. For
this reason C++ was discarded.

2.1.3 Java

Java is syntactically similar to C++, but abstracts away some of the hacks
remaining from C. For example, in Java the distinction between a pointer and a
value is based on context, rather than them being explicitly differentiated from
each other. As such Java’s memory model is only accessible to Java programs
through Java code, there is no rewriting of memory addresses by the program.

Whilst Java takes the class-based object system of C++ slightly further,
treating objects in almost the same way as its built in, non-object types, it is
still simply a wrapper around the built in types, which are not changable.

Java is clearer than C and C++ code due to the lack of pointers and the
extended use of objects, and its inclusion of a garbage collector reduces some
code overhead, however despite this the boilerplate for Java can be even higher
than that of C++, and the enforcement of Java’s style makes algorithm imple-
mentation difficult unless the algorithm happens to exactly fit Java’s restrictive
definition of correct.

This makes Java unsuitable for this project.

9

2.1.4 FORTRAN

FORTRAN is a heavily numerical language, stateful and fast, which is a well
suited paradigm to a Physics simulation project, however code organisation and
data structures are rather limited. This makes it useful, but not ultimately the
implementation language.

2.1.5 Python

Python is a dynamic, late-bound language which does not suffer from many of
the static restrictions of C, C++ and Java since it is entirely object oriented.
In Python there are no base types, since everything is an object. Whilst the
class-based object model used in C++ and Java is also used in Python, the
requirement to give variables explicit types is eliminated by making every vari-
able a pointer. Since pointers are always integers this removes any distinction
between them, even though they can point at any Object in memory. Python is
therefore “duck typed”, following the adage “If it walks like a duck and quacks
like a duck, I would call it a duck”. This is in reference to accessing a member of
an object , which Python will always attempt regardless of whether the object
contains such a member or not, raising an Exception (which can be caught) in
the latter case. Duck typing in combination with the “Easier to ask forgiveness
than permission” method of exception handling reduces a lot of boilerplate code,
leaving in place highly readable code. The extra polymorphism introduced also
reduces code duplication and the requirement for a pervasive naming scheme
(such as Hungarian notation). The pervasiveness of Python’s object model ex-
tends to classes and functions, which are first class language constructs. Late
binding allows classes to be modified on the fly and high level functions (those
which act on other functions) to be constructed in a general way.

Another advantage to Python is the resemblance of its syntax to that of pseu-
docode, making the implementation of a pseudocode algorithm often a matter
of merely tweaking the syntax, such as adding a colon after “if” and “for” lines.
The syntax also has built in support for lists (mutable object sequences of mu-
table length) by simply writing “[element 1, element 2, ... element n] and dic-
tionaries (mutable associative arrays, mapping key objects to value objects) by
writing “{key 1:value 1, key 2:value 2, ... key n:value n}. These make Python
code very readable, especially when used in loops of the form “for element in
list:” and “for element in dictionary.keys():”.

Python’s implicit, stateful paradigm is well suited to the simulation being
approached. Its polymorphism, achieved through duck typing, allows modular-
ity without loss of terseness.

2.1.6 Haskell

Haskell is a lazy, stateless, functional programming language. Being functional
and stateless, Haskell is well suited to evaluating Mathematics, since Mathe-
matics is inherently concurrent, and thus the concept of reassigning variables
(outside of specified “let” statements) makes no sense.

10

Haskell is lazy in that its functions are evaluated when required to produce
output, but other than that they are simply ’remembered’ as “thunks”. This
allows convenient constructions such as infinitely long lists and “Currying”,
supplying functions with fewer arguments than they require in order to produce
new functions which no longer require those arguments to be supplied. This fits
elegantly into Haskell’s type system, which allows extremely general, verifiably
correct functions to be constructed.

However, since variables are immutable in Haskell this comes with the cost
of a much higher memory footprint (since new variables must be constructed to
store new values, rather than replacing old ones). For a simulation, which only
depends on the current state and the functions which transform it into the next
state, the overhead of remembering every state of every element of the system
at every point in time is too much of a cost. This could be overcome through
the use of thunks, but would make removing escaped particles difficult.

2.1.7 Erlang

Erlang is a distributed, functional, actor based programming language designed
to spread computation transparently over thousands of machines or more. Whilst
this is in itself a killer feature for the language, it is incredibly difficult to verify
the correctness of the concurrent code. Though sophisticated testing infrastruc-
ture exists, often the majority of an Erlang application is tests. For a scientific
project this level of uncertainty is not acceptable.

2.1.8 Decision

Python was chosen as the most appropriate language to use, since it allows the
expression of the relevant algorithms in a concise and understandable manner.
Whilst typical Python implementations do not perform as well as lower level
languages such as C or machine code, this is a temporary issue which can be
resolved through more sophisticated implementations. Donald Knuth famously
said “Premature optimization is the root of all evil”, and thus the best opti-
misation should be performed at run time, as the confusion it creates in the
thought processes before this point works to the detriment of a project. Some
attempts at optimisation are discussed below.

2.2 Implementations

2.2.1 First generation: x and y matrices

Once the formulas in Appendix A had been derived, implementing a correct sim-
ulation in Python took around 30 minutes. The approach taken was to split the
problem into the classes Particle (representing a particle), Ring (representing
a ring) and Headless (representing a non-interactive simulation). Each Parti-

cle object contains two matrices, the
[
x
x′

]
matrix and the

[
y
y′

]
matrix. The

11

implementation of these matrices is taken from the Numpy library of numeri-
cal and scientific Python code. The Ring contains a list of particles and two

matrices, the

 cos
(√

1− ndzr0
)

r0√
1−n sin

(√
1− ndzr0

)
−
√

1−n
r0

sin
(√

1− ndzr0
)

cos
(√

1− ndzr0
) matrix for x

transformations and the

 cos
(√

ndzr0

)
r0√
n

sin
(√

ndzr0

)
−
√
n
r0

sin
(√

ndzr0

)
cos
(√

ndzr0

) matrix for y

transformations.
The Ring can be told to step its list of Particles through a number of sections

(ie. apply the matrices the given number of times). At each step the Particles list
is pruned of those which fall outside the Ring’s boundaries. The full simulation
is achieved by performing Nsections ×Nrotations steps.

This works well, but is rather slow. Timing results show a total running time
of 140 seconds to simulate 19 Rings (with field indices from 0.05-0.95 inclusive),
with 40 sections each, with the simulation sending 100 particles around each
50 times. This is a total of 7.6 million multiplications of 2x1 vectors by 2x2
matrices, around 50,000 multiplications per second.

Some speed increases were achieved through use of Python’s functional ab-
stractions, replacing the loop multiplying the matrices with a call to map the
appropriate function to the particles list, and the loop checking for escaped par-
ticles was replaced with a call to filter the list using a position-checking function.
This made the code slightly clearer and brought the running time for the setup
described above to 55 seconds, a reduction of 60%.

Further optimisation focused on making the simulation run concurrently
across both CPU cores of the machine being used for development. Use of
the Threading module was abandoned due to the CPython implementation’s
“Global Interpreter Lock” which prevents multiple threads from running con-
currently in one process. Next the Processing module was used, which has an
identical API to Threading but spawns multiple processes rather than threads.
These run concurrently, giving a 100% speed increase on a dual-core machine,
however the lack of shared memory between processes made communicating the
results into the output stage difficult. The Multiprocessing module was then
used, which once again follows the same API, but offers queues sharable be-
tween processes, which made it more straightforward to send results back, and
even allowed regular progress to be reported, leading to a rudimentary GUI
written using the Pygame graphics library.

2.2.2 Second generation: Combined x and y matrices

The next iteration of the simulation forked it and replaced the radial and vertical
vectors with a single, 4 row vector, and the associated transformation matrices
with a single 4x4 matrix, shown at the end of Appendix A. The main advantage
to this is that the Particle class becomes simply a wrapper around its Numpy
matrix, however this iteration never achieved satisfactory results.

12

2.2.3 Third Generation: FORTRAN enhanced

Using the f2py tool it is trivial to call FORTRAN subroutines from Python, thus
the simulation was forked and FORTRAN code was incorporated for quickly cre-
ating the large numbers of particles required, stepping through the sections and
multiplying matrices stored in row-major order (ie. row1 column1, row1 col-
umn2, row2 column1, row2 column2, etc.). The use of FORTRAN, however,
gave consistently wrong results, with each even-indexed Ring losing all its Par-
ticles whilst the odd-indexed Rings gave the results expected. This occurred for
the custom FORTRAN as well as simple calls to FORTRAN’s built-in MAT-
MUL subroutine to multiply two matrices. After much debugging the embedded
FORTRAN was abandoned.

2.2.4 Fourth Generation: C++ Compiled

The shedskin tool allows compilation of a subset of Python, which does not
utilise its dynamic abilities, into C++ code. This can then be compiled and
used by any other Python program as if it were native, although losing the duck
typing of its functions. The simulation was forked and hacked until it did not
use any dynamic types or other dynamic features, then was compiled to C++ by
shedskin and then to machine code with GCC. After much further hacking the
compiled modules could be used concurrently by each process. This compiled
version, however, did not give satisfactory results, thus after much debugging it
too was abandoned.

2.2.5 Fifth Generation: Rewritten

The final iteration of the simulation was made from scratch, once work on the
previous solutions ensured that the problem was better understood. This version
is pure Python, consisting of a Matrix class (implementing a custom Python
implementation of general matrices, including operator overloading) a Particle
class (containing a Matrix and whether the particle has escaped vertically or
horizontally), a RingSection class (containing a Matrix and multiplies with a
Particle), a Ring class (containing a list of RingSections, a list of Particles and an
index of the current position in the sections list) and a Simulation class (which
initialises everything). The source for this implementation is in Appendix B.
Various forks of this code were used to generate the statistics in section 1.2.

Some optimisations were attempted using Pyrex to compile Python into C
but this produced some speed ups and some slow downs. The code was not
modified. Attempts were also made to JIT compile with PyPy, but the source
would not build for lack of memory.

2.3 Evaluation

In total for this simulation there have been 5 Python implementations, 3 FOR-
TRAN subroutines, 2 Haskell attempts, 1 Reia (Erlang) attempt and 2 attempts
to construct C extensions for Python. In the end a pure Python approach was

13

taken, as its simplicity cannot be made up for by performance optimisations.
The simulation works, and will continue to work for as long as a computer is
capable of running Python 2.x scripts. The code has been tested in 3 differ-
ent Python implementations, CPython 2.5, Unladened Swallow and PyPy 1.0.
Whilst speed could improve dramatically, the simulation is not the correct place
to fix this, the correct area to address speed issues is in the interpreter/compiler.
There are on-going efforts to improve Python performance such as the StarKiller
and shedskin C++ translators, the Pyrex C translator, the Psyco x86 machine
code translator and its successor the PyPy project, which JIT compiles to CLI
(Common Language Infrastructure) and Java bytecode, LLVM instructions, C
and machine code (amongst other things). This is an active area of research,
and the widespread use of Python ensures it gets some attention (for instance
Google’s Unladened Swallow project is applying as much state-of-the-art knowl-
edge to CPython as possible)

3 Appendices

Appendix A: Derivation of Particle Mechanics

Here we derive the equations of motion for a charged particle in a magnetic
storage ring from classical electromagnetism, representing them in matrix form.

Firstly it is known from Maxwell’s equations that

∇ ·B = 0 (1)

where B is a magnetic field, from electromagnetism that the force on a
particle with charge e, moving through a magnetic field B with a velocity v
perpendicular to the field is given by

FMAGNETIC = ev ×B (2)

from classical mechanics the centripetal force on a body with mass m in a
stable orbit of radius r is given by

FCP =
mv2

r

and from Newton the net force on a body with mass m and displacement d
is given by

FNET = −md̈

Considering an infinitesimal section of the ring there is no curvature, so
Cartesian coordinates can be used without complication. For simplicity the z
axis is defined as the propagation direction, making the length of the section
dz. This gives equation 1 the form

∂Bx
∂x

+
∂By
∂y

+
∂Bz
∂z

= 0

14

r0

x
y

z

dz

2xmax

2y
max

Particle Storage Ring

Figure 7: Storage ring diagram. Origin is at the centre of the ring.

Since the ring is symmetric, and thus has an arbitrary origin, it must be
true that

∂Bz
∂z

= 0

∴
∂Bx
∂x

+
∂By
∂y

= 0

The coordinates can be further defined such that the x axis is always parallel
to the major radius of the ring, r0, with its origin at the centre of the ring, and
the y axis is perpendicular to the x and y axes with it origin on the median
plane containing the ring. Motion parallel and perpendicular to the ring’s major
radius (hereafter referred to as radial and vertical respectively) can be considered
independently.

3.1 Radial Motion

The radial component of motion is parallel to the x axis. Considering only this
direction, equation2 is simply

Fx = evBy

where v is the component of the velocity perpendicular to the y axis.
By equating the radial forces, and taking x to be the radial displacement

from the particle beam’s centre, the equilibrium radius can be found

evBy =
mv2

r0 + x
(3)

15

evBy
mv2

=
1

r0 + x

Since x� r0, the first two terms of the binomial expansion of the right hand
side can be used as a valid approximation

(r0 + x)−1 ' 1
r0
− x

r20
=
r0 − x
r20

∴
evBy
mv2

' r0 − x
r20

evBy '
r0 − x
r20

mv2

This describes the forces in the z direction, but to generalise to the plane
perpendicular to y the radial forces need to be considered. By including these,
in the form of mẍ, all forces in the plane of the ring can be related by equating
the required centripetal force with the sum of the electromagnetic and the radial
force

mẍ+ evBy =
r0 − x
r20

mv2

evBy = m

(
r0 − x
r20

v2 − ẍ
)

(4)

Since the magnetic field B changes through space, it is necessary to consider
By as a function of x. Since particle positions are characterised by the radius
r0 and their displacement from it x, where x� r0, the vertical field component
at a particle’s position can be approximated using Euler’s method

By (r0 + x) ' By (r0) + x
∂By
∂x

Now the field index n can be defined such that

n ≡ − r0
By
· ∂By
∂x

to give the vertical field component the following form

By (r0 + x) ' By (r0) + x
∂By
∂x

By (r0 + x) ' By (r0) + x
∂By
∂x
· r0
r0
· By (r0)
By (r0)

16

By (r0 + x) ' By (r0)

1 +
x
∂By

∂x ·
r0

By(r0)

r0

By (r0 + x) ' By (r0)

(
1− nx

r0

)
(5)

Replacing By with this function approximation in equation 3 results in

evBy (r0)
(

1− nx

r0

)
= m

(
r0 − x
r20

v2 − ẍ
)

(
1− nx

r0

)
=

m

evBy (r0)

(
r0 − x
r20

v2 − ẍ
)

From 3we can say r0 = mv
eBy(r0)

when the orbit is at r0, so the above becomes

1− nx

r0
=
r0 (r0 − x)

r20
− mẍ

evBy (r0)

∴ 1 =
r0 − x
r0

+
nx

r0
− mẍ

evBy (r0)

1 =
r0 − x+ nx

r0
− mẍ

evBy (r0)

1 =
r0 + x (n− 1)

r0
− mẍ

evBy (r0)

1 =
r0
r0

+
x (n+ 1)

r0
− mẍ

evBy (r0)

∴
mẍ

evBy (r0)
= 1− 1 +

x (n− 1)
r0

mẍ

evBy (r0) r0
=
x (n− 1)

r20

mvẍ

eBy (r0) r0
=
v2x (n− 1)

r20

17

Substituting in r0 = mv
eBy(r0)

this becomes

r0
r0
ẍ =

v2x (n− 1)
r20

∴ ẍ = −
(
v2 (1− n)

r20

)
x

From the chain rule of differentiation d2x
dz2 = d2x

dt2 ·
d2t
dz2 and, since dz

dt = v,
dt
dz = 1

v and thus d2t
dz2 = 1

v2 .
By denoting differentials with regards to z with a prime (′)

x′′ =
ẍ

v2

x′′ = −
(

1− n
r20

)
x

For a stable orbit n < 1 and acceleration is directed towards the central
orbit distance. This gives an equation of the form

x′′ = −ω2x (6)

where ω =
√

1−n
r20

which is simple harmonic motion.
This means that x must have the solutions

x = A cos
(√

1− n
r0

· z
)

+B sin
(√

1− n
r0

· z
)

Differentiating x with regards to z gives

x′ = −A
√

1− n
r0

sin
(√

1− n
r0

z

)
+B

√
1− n
r0

cos
(√

1− n
r0

z

)
Let the initial state at z = 0 be x = x1 and x′ = x′1, thus

x1 = A cos 0 +B sin 0

∴ x1 = A

x′1 = −A
√

1− n
r0

sin 0 +B

√
1− n
r0

cos 0

x′1 = B

√
1− n
r0

18

∴ B =
x′1r0√
1− n

Now the above equations become

x = x1 cos
(√

1− n
r0

· z
)

+
x′1r0√
1− n

sin
(√

1− n
r0

· z
)

and

x′ = −x1

√
1− n
r0

sin
(√

1− n
r0

z

)
+

x′1r0√
1− n

√
1− n
r0

cos
(√

1− n
r0

z

)

x′ = −x1

√
1− n
r0

sin
(√

1− n
r0

z

)
+ x′1 cos

(√
1− n
r0

z

)
These now express the approximate position (x) and divergence (x′) at a

position z around the ring, relative to a previous position (x1) and divergence
(x1′). Rather than the above formulaic representation, with the initial values
encoded into the formula, a matrix representation splits these values away from
the constants to give[

x2

x′2

]
=

 cos
(√

1− n z
r0

)
r0√
1−n sin

(√
1− n z

r0

)
−
√

1−n
r0

sin
(√

1− n z
r0

)
cos
(√

1− n z
r0

) [x1

x′1

]
Since approximations have been made in the construction of this result, the

smaller the value of z used, the more accurate the result will be. Taking an
infinitesimal section of length dz gives us the best approximation[

x2

x′2

]
=

 cos
(√

1− ndzr0
)

r0√
1−n sin

(√
1− ndzr0

)
−
√

1−n
r0

sin
(√

1− ndzr0
)

cos
(√

1− ndzr0
) [x1

x′1

]

3.2 Vertical Motion

A similar thread can be used to derive a matrix representation of the vertical
(y) motion.

Using the same binomial expansion method for the B field as in the radial
case, the perpendicular (x) component is found

Bx (y) ' y ∂Bx
∂y

From equation 1 it is known that ∂Bx

∂x = −∂By

dy and that ∇ ·B = 0. Since B
cannot depend on z, since the ring is symmetric, it can only depend on x and
y, thus

∂Bx
∂y

=
∂By
∂x

19

∴ n = − r0
By
· ∂By
∂x

= − r0
By
· ∂Bx
∂y

∴
∂Bx
∂y

= −nBy
r0

Substituting this into equation 2, perpendicular to the vertical, gives

mÿ = Bx (y) ev

= y
∂Bx
∂y

ev

= −yevnBy
r0

∴ ÿ = −evByn
r0m

= −ev
2Byn

r0mv

Since r0 = mv
eBy

this becomes

ÿ = −ynv
2

r20

= −
(
nv2

r20

)
y

Again, from the chain rule, d2y
dz2 = d2y

dt2 ·
d2t
dz2 = d2y

dt2 ·
1
v2 , so

y′′ = −
(
n

r20

)
y (7)

This is once again simple harmonic motion for n > 0, with general solution

y = C cos
(√

n
z

r0

)
+D sin

(√
n
z

r0

)

∴ y′ = −C
√
n

r0
sin
(√

n
z

r0

)
+D

√
n

r0
cos
(√

n
z

r0

)

20

Where C and D can be calculated in the same way as in the radial case,
yielding a transformation matrix

[
y2
y′2

]
=

 cos
(√

n z
r0

)
r0√
n

sin
(√

n z
r0

)
−
√
n
r0

sin
(√

n z
r0

)
cos
(√

n z
r0

) [y1
y′1

]

Which for an infinitesimal section dz becomes[
y2
y′2

]
=

 cos
(√

ndzr0

)
r0√
n

sin
(√

ndzr0

)
−
√
n
r0

sin
(√

ndzr0

)
cos
(√

ndzr0

) [y1
y′1

]

3.3 Combined Matrix

In some implementations, the radial and vertical matrices have been combined.
This is easily achieved by combining the radial and vertical values into a single

vector

x
x′

y
y′

 and extending the transformation matrix to be the following 4×4,

matrix
cos
(√

1− ndzr0
)

r0√
1−n sin

(√
1− ndzr0

)
0 0

−
√

1−n
r0

sin
(√

1− ndzr0
)

cos
(√

1− ndzr0
)

0 0

0 0 cos
(√

ndzr0

)
r0√
n

sin
(√

ndzr0

)
0 0 −

√
n
r0

sin
(√

ndzr0

)
cos
(√

ndzr0

)

3.4 Motion in Free Space

In free space, ie. in a section without surrounding magnets, the field index n
becomes zero. This simplifes the transformation matrix to

x2

x′2
y2
y′2

 =

cos
(
dz
r0

)
r0 sin

(
dz
r0

)
0 0

− 1
r0

sin
(
dz
r0

)
cos
(
dz
r0

)
0 0

0 0 1 dz
0 0 0 1

x1

x′1
y1
y′1

3.5 Phase-Space Shape

From equation 6 it is possible to derive the shape of the rings’ acceptance, since
we know this simple harmonic motion can have the following solution

x = A sin
(√

1− n
r20

z + φ

)

21

∴ x′ = A

√
1− n
r0

cos
(√

1− n
r20

z + φ

)
From these we can derive the following

x

A
= sin

(√
1− n
r0

z + φ

)

r0√
1− n

x′

A
= cos

(√
1− n
r0

z + φ

)

(x
A

)2

= sin2

(√
1− n
r0

z + φ

)
(

r0√
1− n

x′

A

)2

= cos2
(√

1− n
r0

z + φ

)
Adding these last two equations together yields(x
A

)2

+
(

r0√
1− n

x′

A

)2

= sin2

(√
1− n
r0

z + φ

)
+ cos2

(√
1− n
r0

z + φ

)
= 1

x2

A2
+

r20 (x′)2

A2 (1− n)
= 1 (8)

Since this is simple harmonic motion, from equation 6 we can say 1−n
r20

=

ω2 =
(

2π
λ

)2 where λ is the wavelength of the oscillation. Using this we can
transform the above equation in to

x2

A2
+

(x′)2

A2
(

2π
λ

)2 = 1

If we call the wavelength 2Λ ≡ λ then

1− n
r20

=
(

2π
λ

)2

1− n
r20

=
(

2π
2Λ

)2

1− n
r20

=
(π

Λ

)2

22

1− n
r20

=
π2

Λ2

r20
1− n

=
Λ2

π2

Substituting this in to equation 8 gives

x2

A2
+

Λ2 (x′)2

A2π2
= 1

This is an equation of the form x2

a2 + y2

b2 = 1 which describes an ellipse, in
this case in the dimensions x and x′, ie. phase space.

The same can be done vertically starting from equation 7

y′′ = − n
r20
y

∴ y = C sin
(√

n

r0
z + Ω

)

∴ y′ =
√
n

r0
C cos

(√
n

r0
z + Ω

)
From these we can say

y

C
= sin

(√
n

r0
z + Ω

)

y′r0√
nC

= cos
(√

n

r0
z + Ω

)

y2

C2
= sin2

(√
n

r0
z + Ω

)

r20 (y′)2

nC2
= cos2

(√
n

r0
z + Ω

)
Adding these gives

r20 (y′)2

nC2
+
y2

C2
= sin2

(√
n

r0
z + Ω

)
+ cos2

(√
n

r0
z + Ω

)
= 1 (9)

23

From equation 7 it is known, from simple harmonic motion, that n
r20

=
(

2π
ξ

)2

where ξ is the wavelength of the oscillations. Let 2Ξ ≡ ξ then

n

r20
=
(

2π
ξ

)2

n

r20
=
(

2π
2Ξ

)2

n

r20
=
π2

Ξ2

r20
n

=
Ξ2

π2

Substituting this into equation 9 gives the following

Ξ2 (y′)2

π2C2
+
y2

C2
= 1

This is also an elliptical equation of the form x2

a2 + y2

b2 = 1.

Appendix B: Final Source Code

The following is the complete source code, in Python, of the simulation’s final in-
carnation. This is available electronically from its Git distributed version control
repository at http://github.com/Warbo/ParticleStorageRingSimulation/tree/master.

Matrix.py

#!/usr/bin/env python

class Matrix:
"""This custom class is a pure Python implementation of matrices."""

def init (self, rows, columns):
self.row number = rows

self.column number = columns

self.matrix = []
for r in range(self.row number):

self.matrix.append(None)

24

for row in range(self.row number):
new column = []
for column in range(self.column number):

new column.append(0.0)
self.matrix[row] = new column

def setitem (self, position, value):
pos = position.split(’,’)
row = int(pos[0])
column = int(pos[1])
self.matrix[row][column] = value

def getitem (self, position):
pos = position.split(’,’)
row = int(pos[0])
column = int(pos[1])
return self.matrix[row][column]

def make matrix(self, values):
"""Generates a matrix with values given in the (row-major)
nested list given."""
rows = len(values)
columns = len(values[0])
matrix = Matrix(rows, columns)
for r, row in enumerate(values):

for c, element in enumerate(row):
matrix[str(r)+’,’+str(c)] = element

return matrix

def get column(self, index):
column = []
for row in self.matrix:

column.append(row[index])
return column

def mul (self, other):
"""Returns a Matrix of the result of multiplying this matrix
with the given matrix."""

First check that multiplication is defined for these matrices
if not self.column number == other.row number:

raise ValueError("Matrix dimensions do not match.")

Now make the resulting matrix
matrix = Matrix(self.row number, other.column number)

25

Now calculate each element of the new matrix
for r, row in enumerate(matrix.matrix):

for c, element in enumerate(row):

The current element is the sum of the elements of
this matrix’s row and the other matrix’s column
for i in range(self.row number):

matrix[str(r)+’,’+str(c)] += \
self.matrix[r][i] * other.get column(c)[i]

return matrix

def str (self):
return string = "[\n"
for row in self.matrix:

return string = return string + ’ ’ + str(row) + ’\n’
return string = return string + ’]’
return return string

m = Matrix(1, 1)

Particle.py

#!/usr/bin/env python

import Matrix

class Particle(object):

def init (self, matrix):
self.matrix = matrix
self.lost = [False, False]

def make particle(self, x, y, x divergence, y divergence):
return Particle(Matrix.m.make matrix([[x],[x divergence],[y],[y divergence]]))

def str (self):
return ’P’ + str(self.matrix)

p = Particle(Matrix.m)

26

RingSection.py

#!/usr/bin/env python
import Particle

class RingSection(object):

def init (self, matrix):
self.matrix = matrix

def mul (self, particle):
lost = particle.lost
to return = Particle.Particle(self.matrix * particle.matrix)
to return.lost = lost
return to return

Ring.py

#!/usr/bin/env python
import RingSection
import Matrix
import Particle

class EscapeException(Exception):
pass

class Ring(object):

def init (self, ring sections, particles, xmax, ymax):
self.particles = []
self.particles.append(particles)
self.sections = ring sections
self.xmax = xmax
self.ymax = ymax

def step(self, steps):
ps=[]
for particle in self.particles[-1]:

steps taken = 0
try:

for section in self.sections:
if steps taken >= steps:

raise EscapeException()
ps.append(section * particle)
if self.is escaped(particle):

27

raise EscapeException()
steps taken += 1

except EscapeException:
pass

self.particles.append(ps)
ps=[]

def is escaped(self, particle):
if abs(particle.matrix[’0,0’]) > self.xmax:

particle.lost[0] = True
if abs(particle.matrix[’2,0’]) > self.ymax:

particle.lost[1] = True
return any(particle.lost)

Simulation.py

import Ring
import RingSection
import Particle
import Matrix
import math
import random

def make particles(number, xmax, ymax, xpmax, ypmax):
particles = []
for index in range(number):

particles.append(Particle.p.make particle(\
(random.random()*2*xmax)-xmax, \
(random.random()*2*ymax)-ymax, \
(random.random()*2*xpmax)-xpmax, \
(random.random()*2*ypmax)-ypmax))

return particles

def count x lost(particles):
count = 0
for particle in particles:

if particle.lost[0]:
count += 1

return count

def count y lost(particles):
count = 0
for particle in particles:

if particle.lost[1]:
count += 1

28

return count

def count lost(particles):
count = 0
for particle in particles:

if any(particle.lost):
count += 1

return count

Set some properties
n steps = 20
particles = 10
ring steps = 40.
total steps = ring steps * 50
r0 = 2.
xmax = 0.03
ymax = 0.03
xpmax = xmax/r0
ypmax = ymax/r0

dz = (2 * r0 * math.pi) / ring steps

These are the field indices to use
ns = [float(x)/n steps for x in range(1, n steps)]

This stores the rings to be simulated
rings = []

Make one ring per field index
for n in ns:

Create the matrices for this field index
ring matrix = Matrix.m.make matrix([\

[math.cos(((1-n)**0.5)*(dz/r0)), (r0/((1-n)**0.5))*math.sin(((1-n)**0.5)*(dz/r0)),0.0,0.0],\
[-1. * (((1-n)**0.5)/r0)*math.sin(((1-n)**0.5)*(dz/r0)), math.cos(((1-n)**0.5)*(dz/r0)),0.0,0.0],\
[0.0,0.0,math.cos((n**0.5)*(dz/r0)), (r0/(n**0.5))*math.sin((n**0.5)*(dz/r0))],\
[0.0,0.0,-1. * ((n**0.5)/r0)*math.sin((n**0.5)*(dz/r0)), math.cos((n**0.5)*(dz/r0))]
])

empty matrix = Matrix.m.make matrix([\
[math.cos(dz/r0), r0*math.sin(dz/r0),0.0,0.0],\
[(-1.0/r0)*math.sin(dz/r0), math.cos(dz/r0),0.0,0.0],\
[0.0,0.0,1.0,dz],\
[0.0,0.0,0.0,1.0]\
])

Make the sections for this ring

29

sections = []
for x in range(int(ring steps)):

sections.append(RingSection.RingSection(ring matrix))

Make the ring
rings.append(Ring.Ring(sections, make particles(particles, xmax,

ymax, xpmax, ypmax), xmax, ymax))

Run the simulation
for x, ring in enumerate(rings):

ring.step(total steps)
print str(len(rings) - x)

Receive the results
out = ["n, remaining, xlost, ylost"]

for x, ring in enumerate(rings):
out.append(str(ns[x]) + ’, ’ + str(particles - count lost(ring.particles))

+ ’, ’ + str(particles - count x lost(ring.particles)) + ’, ’ + str(particles
- count y lost(ring.particles)))

Write the results to a file
outfile = open("OUT.csv", "w")
for line in out:

outfile.write(line + ’\n’)
outfile.close()

4 References

[1] Banford, A. P., The Transport of Charged Particle Beams, Spon, 1966
[2] Hamkins, J. D., Infinite Time Turing Machines: Supertask Computation,

arXiv:math/0212047v1, 2002
[3] Durrett, R., Probability: Theory and Examples, http://www.math.cornell.edu/˜durrett/PTE/pte.html,

2009

30

