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ABSTRACT
Theory Exploration (TE) aims to automate the tedious
yet necessary task of verifying Mathematicians’ and program-
mers’ work, but the blind search used by existing approaches
limits them to small examples. Meanwhile, huge reposito-
ries of formal knowledge are being routinely data-mined for
structure and correlation. We provide a method for guiding
TE using these abundant statistics, and assess whether this
hybrid approach is feasible for tackling problems of a realistic
size.

INTRODUCTION
Small mistakes made in Mathematics and programming can
cause large problems in the real world. Computer verification
can reduce this risk by checking our reasoning step-by-step;
but traditional software’s inability to follow “obvious” argu-
ments without explicit guidance often makes it impractical.
The recent theory exploration approach[1] tackles this by
generating a database of facts about a user-provided “theory”
(eg. a software library). This database can either serve as
“background knowledge” for a traditional verification tool,
to help it follow more coarse-grained proof steps; or it can
be queried directly to discover interesting facts about the
theory.
Existing TE systems, such as QuickSpec[3] and HipSpec[2],
rely on undirected, brute-force search to generate their
databases. Although complete, these algorithms’ exponential
complexity limits their scalability to small theories with
only a handful of definitions. To be practical, the technique
must be able to work with theories spanning thousands of
definitions, without relying on expert users to cherry-pick a
sub-set.
Machine Learning (ML) offers many scalable techniques
for studying large theories, such as premise selection[5]:
choosing lemmas which are most likely to help us prove
a conjecture. This is similar to our cherry-picking problem,
but TE is concerned with a theory’s structure rather than
individual conjectures.
Theory structure has been studied by ML4PG[4], using clus-
tering to find statistical similarities and hierarchies among
definitions. We investigate whether such clustering infor-
mation can help TE systems navigate large theories more
effectively.

METHODOLOGY

Following the approach of QuickSpec, our “theories” are
software libraries written in Haskell; a popular programming
language where correctness is concerned. We divide these
definitions into small clusters, using a similar technique to
ML4PG. We then run QuickSpec on each cluster individu-
ally, to produce “facts” in the form of equalities relating the
definitions. The facts for each cluster are then combined.
We compare the total running time and the resulting database
against running QuickSpec on the whole, unclustered library.
We observe the tradeoff between speed and completeness, for
various library sizes.

RESULTS
We have developed an ML approach for analysing Haskell
code, including a bespoke feature extraction method which,
to our knowledge, is the first in the literature. The success
of our clustering tool shows the suitability of Haskell for the
same statistical approaches used to study other languages.

FUTURE WORK
Our tool can be improved with a more systematic consid-
eration of the design decisions and heuristics used, but the
preprocessor approach is inherently limited. A more thor-
ough integration of our methodology into state-of-the-art
TE systems would provide more opportunities for exploiting
statistical information, and also to “close the loop” by using
the TE database to inform the statistical algorithms.
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