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ABSTRACT
We aim to aid programmers in understanding and maintain-
ing software by increasing the capability of theory exploration
systems for discovering novel, unexpected properties of pro-
grams and libraries. Existing theory exploration systems find
equivalent program fragments via brute-force search, which
doesn’t scale well to realistic codebases. We narrow down the
scope of each exploration run using statistics derived from
the semantic similarity of the source code being explored,
using a process called recurrent clustering.

1. INTRODUCTION
As computers become ever more important in research, in-
dustry and society, so does the ability to program them
effectively, economically and correctly. Whilst tools exist
to help programmers understand and manipulate software,
ranging from linters [8] through to formal verification sys-
tems [1], these are often limited in scope (e.g. to syntax
rather than semantics) or require precise guidance from the
user. One reason is that automating the search for patches
[6], refactorings, optimisations [11], proofs [12], and other
routine programming tasks is prohibitively expensive due to
the size of the search space.
We investigate the use of machine learning techniques to
restrict such search spaces more intelligently than uninformed
local search, specifically the use of clustering to aid theory
exploration (TE) in discovering program equivalences.

2. BACKGROUND

2.1 Theory Exploration
Our work builds on the existing TE system QuickSpec[4],
which finds equivalent expressions in the Haskell program-
ming language [10], built from a user-provided signature
of constants and variables. For example, given a signa-
ture of the list-manipulating functions reverse, length and
append, plus two list variables x and y, QuickSpec will
discover that reverse (reverse x) is equivalent to x; that
length (reverse x) is equivalent to length x; that length
(append x y) is equivalent to length (append y x); and
so on. These are discovered by enumerating all well-typed
combinations of the signature’s constants and variables, then
randomly instantiating the variables [2] and comparing the
resulting closed terms. Any expressions which remain indis-
tiguishable after hundreds of instantiations are conjectured

to be equivalent and, after removing redundancies, are pro-
duced as output. These conjectures can be sent through a
theorem prover [3] and used to inform tests, optimisations,
refactoring, verification, or simply to help the programmer
learn more about the code.
Due to its exponential complexity, this enumerating proce-
dure is limited to producing small expressions from signatures
with only a few elements. Such small signatures give little
chance for serendipitous discoveries, which undermines the
algorithm’s potential to present programmers with new, un-
expected information.

2.2 Recurrent Clustering
To reduce the user’s need to cherry-pick signatures, our
approach accepts a large signature (e.g. a complete Haskell
package) and uses statistical machine learning methods to
select smaller signatures automatically, using a recurrent
clustering method inspired by those of ML4PG [9] and
ACL2(ml) [7].
Recurrent clustering attempts to cluster expressions based
on their Abstract Syntax Trees (ASTs), an example of which
is shown in Figure 1. First the recursively-structured ASTs
are transformed into vectors of fixed length, by truncating
the tree structure and listing the node labels in breadth-first
order.
These labels are then turned into features (real numbers),
using the function φ which replaces keywords with fixed
values and local variables with context-dependent values
(known as de Bruijn indices [5]). To replace global variables,
φ first performs another round of clustering (hence the name
“recurrent”), without including the current expression; each
global variable is replaced by its cluster index found by this
“inner” round of clustering.
These recursive calls to the clustering algorithm (we use a
standard k-means implementation) allow expressions to be
compared in a principled way: the similarity of expressions
depends on the similarity of the expressions they reference,
and so on recursively. In practice, this recursive algorithm
can be implemented in an iterative way, by accumulating
the set of expressions to cluster in topological order of their
dependency graph.
Figure 1 shows the AST for the following Haskell function
odd, which determines if a Peano numeral is odd:

odd Z = False
odd (S n) = even n

even Z = True
even (S n) = odd n
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Figure 1: AST for the odd function. The variable
names a, b, etc. are chosen arbitrarily.

The odd function references four global variables: Z, S, False
and even. Our algorithm doesn’t yet distinguish between
data constructors, so the only global reference we replace is
even. Likewise, the definition of even references Z, S, True
and odd. For mutual recursion like this, there is no valid
topological order, so we use a sentinel value as the feature.
These feature vectors are sent through a k-means clustering
algorithm, using the Weka machine learning library. For
example, the feature vector for odd (padded to 6 labels for
each level of the tree) will begin:

(φ(Lam), 0, 0, 0, 0, 0, φ("a"), φ(Case), 0, 0, 0, 0, φ(Var), φ("b"), . . .

3. IMPLEMENTATION
We obtain ASTs from Haskell projects using a bespoke plugin
for the GHC compiler. From these ASTs, we extract type in-
formation which is used to append variables to the signature;
and dependency information, which is used to topologically
sort the clustering rounds. We then invoke our iterative
algorithm, which alternates between feature extraction and
clustering until all elements of the signature have been clus-
tered. Each cluster is converted into a QuickSpec signature,
by extracting those functions which a) have an argument
type which we can randomly generate and b) have an output
type which we can compare. QuickSpec is invoked on each
signature, and the resulting sets of conjectures are combined.

4. RESULTS
We have developed a machine learning approach for analysing
Haskell code, including a bespoke feature extraction method
and a full implementation pipeline for turning Haskell pack-
ages into sets of equations.

5. DIFFICULTIES AND FUTURE WORK
The most difficult aspect of performing this exploration was
obtaining real code in a usable format, due to the myriad
edge-cases encountered. We make extensive use of Haskell’s
existing infrastructure, including the GHC compiler, the
cabal build system, the Hackage code repository and the
Nix package manager. Unfortunately, some of these systems
are rather monolithic, which makes it difficult to invoke
particular algorithms, such as GHC’s type class resolution,
on their own. Whilst we have worked around these issues,

e.g. using meta-programming, this introduces unnecessary
latency, fragility and complexity.
Our investigation of recurrent clustering and theory explo-
ration only scratches the surface of combining symbolic and
statistical AI algorithms. As well as benchmarking our ap-
proach against other techniques, there are many similar
opportunities to be explored, where the reasoning power
of symbolic algorithms can be guided and supervised by
statistical, data-driven processes.
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