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Abstract

Science and mathematics are currently vastly under-
represented in the computational creativity (CC) com-
munity. This is at best a wasted opportunity, and at
worst a significant problem for computational creativ-
ity. We discuss why the CC community should apply
their work to scientific and mathematical domains, and
argue that this would be mutually beneficial for the do-
mains in question, demonstrating our position through-
out the paper by reference to mathematics and geology.
We propose a research programme for building closer
relationships between CC and the scientific community,
focusing on understandability of science and the role
that AI is currently playing in scientific research.

Introduction
Despite the best efforts of successive ICCC organising com-
mittees and the computational creativity (CC) community,
CC has always attracted substantially more interest from
researchers in artistic than scientific and mathematical do-
mains. In their 2017 study of application domains in CC,
(Loughran and O’Neill 2017) found that, of 16 categories,
papers on Maths, Science and Logic accounted for only 3%
of the 353 papers on CC across 12 years. Of course, some
work is domain independent, or at least not easily assigned
to an academic discipline, such as the body of work on CC
and curiosity (for instance (Grace et al. 2017)). Even taking
this into account, it is clear that science and mathematics are
vastly under-represented in our community.

There are potentially many reasons why this may be the
case. Firstly, AI researchers in scientific domains may well
be doing creativity-related work in other contexts but not en-
gaging with the CC community. Automated reasoning and
automated scientific discovery are both thriving subfields of
AI, with internationally recognised journals as outlets for
publication and engagement; certainly these will contain
work relevant to our field but couched in different terminol-
ogy with different methodologies. Secondly, it may be that
other, practical, priorities in scientific domains have led to
a focus on techniques such as search, data-mining and au-
tomated deduction. Since these generate results of interest
to domain experts, the more difficult, fluid and tenuous con-
cept of creativity may be seen as unnecessary, risky or sim-
ply not a priority. This may particularly be the case given the

various “AI winters” in the twentieth century (the second of
which ended in 1993, just six years before the first workshop
on CC), and the need for AI to “prove itself”. Thirdly, CC
researchers may consider that even if generation is possible
within scientific domains, evaluation is too difficult. How
we should evaluate our work and our systems has always
been a contentious – albeit important – issue in CC, with few
proposed evaluation metrics and the majority of researchers
still arguing for value along the lines of “we/people liked
the system’s output” or “we/people couldn’t distinguish the
system’s output from human produced work”. It might be
the case that in science, the main evaluation metric – “is it
true?”, or “does it work?” – is considered simply too expen-
sive or difficult to demonstrate.

We argue here that neglecting scientific and mathemat-
ics domains in CC is at best a wasted opportunity, and at
worst a significant problem for CC. While computationally-
produced work in the arts is currently novel, this may have a
limited lifespan. We call this the Saturation Problem. In ten
or twenty years, people may ask themselves whether we still
want more computer-generated paintings or poems. There
may or may not be a good answer to this. The question as
to whether we still want more computer-generated science
or mathematics, however, seems less likely to be asked: we
always want more science and mathematics. We believe that
it is essential to the health of our field that we reach out as a
community at this stage, both to domain experts in science
and maths and to those in related AI areas. The benefits
of doing so will go both ways. As AI is used more and
more in science, there is greater dependence on blackbox
machine learning systems. While providing greater predic-
tive power, this often comes at the cost of understanding.
We call this the Understandability Problem and argue that
it will become a big issue in science, which we will have
to address. Twenty years of thinking about computational
creativity has provided us with valuable tools for thinking
about these problems. This paper is a call to arms to CC
researchers to apply their work to science, thus solving both
the saturation problem and the understandability problem.

Loughran and O’Neill argue that “tackling scientific, log-
ical or realistic issues could help bring the reputation of CC
away from a purely aesthetic domain towards developing so-
lutions for real world problems.” (Loughran and O’Neill
2017, p.7) and that “It is imperative that the field remains



balanced as it grows and that we remember to reflect on
all areas of growth.” [Ibid.]. In this paper we support and
present further arguments for this position, alongside practi-
cal recommendations for doing so.

What is science?
The concept of science is not a straightforward one. The
division of the origins of learning and systematic produc-
tion of new knowledge into disciplines as we know them
tends to takes into account at least some of the following:
methodologies, objects of study (which can be shared with
other disciplines), a body of accumulated knowledge (which
is generally not shared with other disciplines), theories and
concepts, terminology and an institutional manifesto (so that
it can reproduce itself) (Krishnan 2009, p9). Sciences in-
clude Natural sciences, which are subdivided into physical
sciences (chemistry, physics, astronomy), life sciences, or
biology (zoology, botany, ecology, genetics) and earth sci-
ence (geology, oceanography, meteorology, palaeontology);
Social sciences (psychology, sociology, economics, law, po-
litical science); Formal sciences (mathematics, logic, theo-
retical computer science, statistics); and Applied sciences,
which are subdivided into engineering (computer science,
civil engineering, electrical engineering, mechanical engi-
neering); health sciences (medicine, dentistry, pharmacy)
and agriculture. The number and variety of sciences makes
generalisations difficult, and core values vary accordingly.
However, values commonly associated in particular with the
(rather unhelpfully named) “hard sciences” include repeata-
bility, reproducibility, predictability, generality and under-
standability. This last value is particularly cherished: for
instance, Roger G. Newton sums it up as “The primary aim
of most physical scientists is to understand and explain the
workings of Nature.” (Newton 2000, p. 4).

The arts are just as difficult to define. These are some-
times divided into the “seven arts”: Architecture, Sculpture,
Painting, Literature, Music, Performing, and Film.1 Julie
Van Camp, writing in the context of United States Congres-
sional policy on arts education, provides the following ex-
tensional definition:

The term ‘the arts’ includes, but is not limited to, mu-
sic (instrumental and vocal), dance, drama, folk art,
creative writing, architecture and allied fields, paint-
ing, sculpture, photography, graphic and craft arts, in-
dustrial design, costume and fashion design, motion
pictures, television, radio, film, video, tape and sound
recording, the arts related to the presentation, perfor-
mance, execution, and exhibition of such major art
forms, all those traditional arts practiced by the diverse
peoples of this country. (sic) and the study and appli-
cation of the arts to the human environment.2

1A visualisation of the fields of knowl-
edge based on Wikipedia’s list of academic dis-
ciplines and sub-disciplines can be found here:
http://www.thingsmadethinkable.com/item/fields of knowledge.php

2http://web.csulb.edu/ jvancamp/361 r8.html

Science Arts
Aesthetic: truth beauty
Approach: problem-driven artefact-driven
Task: analytic generative
Terminology: discover create
Status: objective subjective
Goal: knowledge self-expression

Table 1: Possible differences between the sciences and the
arts

As a starting point – generalising (and controversially) –
we could suggest some of the differences between the sci-
ences and the arts as shown in Table 1. Of course, the
real-world everyday lived experience of doing science or
doing art is far more complex than Table 1 would suggest.
Studies of interpretations of seismic data in geology, for in-
stance, show the large number of different expert interpre-
tations of the same seismic section, highlighting the subjec-
tivity involved (Bond et al. 2007). These interpretations
are used to analyse subsurface geology, and form the ba-
sis for many exploration and extraction decisions. Even in
cases where interpreters report that an interpretation is rel-
atively straightforward, there are significant differences in
interpretation, leading to significantly different predictions,
for instance about gross pore volume in a pool or gross
rock volume (Rankey 2003). While clearly objectivity is
the goal here, such studies may suggest that this aspect of
geological practice is closer to visual art interpretation than
it is to some other scientific domains. Similarly, studies of
the back stage production of mathematics show that beauty
is often a guiding value (Inglis and Aberdein 2015); there
is a high level of disagreement amongst experts about the
validity of certain proofs (Inglis et al. 2013); and proofs
and theories are often considered to be constructed rather
than discovered (Lakatos 1976). Less structured knowl-
edge such as our ability to reason logically has been shown
to be highly context dependent (for instance, participants
in the Wason Selection Task were unable to solve a prob-
lem at an abstract level but could solve it correctly when
it was framed in a familiar context (Wason and Shapiro
1971)); constructing grounding metaphors to the physical
world and abstract linking metaphors found to be funda-
mental to our understanding and construction of mathemat-
ical knowledge (Lakoff and Núñez 2000); and even the lan-
guage in which reasoning occurs affecting our preconcep-
tions, perceptions and assumptions (Dehaene et al. 2008;
Barton 2009).

Dibbets expresses the relationship between arts and sci-
ences well:

But in the end, we all do very much of the same. All
scientists, artists, composers and writers are intensively
occupied imagining something that does not yet exist.
They find themselves at the borders of areas where up
to then hardly anyone found himself, trying to solve
problems that are incomprehensible to others, trying to
answer questions no one has ever asked. Here, they



share a vision on things that are not yet real. (Dibbets
2002, p. 1)

Some of these interdisciplinary features are recognised in
curriculum design and teaching featuring transferable skills,
in which one skill may be learned within a scientific con-
text and developed or employed in an arts context, or vice
versa (see for instance (Gaff and Ratcliff 1996)). Indeed,
the STEM to STEAM movement (expanding the acronym
Science, Technology, Engineering, and Mathematical disci-
plines to include Art) explores the role of arts integration,
collaboration, and experience centered learning in knowl-
edge creation (Ghanbari 2015). Of course, the need for
so many interdisciplinary initiatives (and related concepts
such as transdisciplinarity, pluridisciplinarity, and multi-
disciplinarity) may suggest that some traditional discipline
boundaries are no longer drawn in a helpful way. The evolv-
ing role and functionality of AI systems further complicates
things. The focus of AI researchers, particularly in machine
learning, is often on the skills they hope to simulate rather
than a particular domain in which they are usually employed.
This may be more a more productive approach than the typ-
ical CC focus on domain over skill.

The Saturation Problem in Computational
Creativity

The saturation problem in CC is potentially an identity prob-
lem for us. Recent developments in other areas of AI – prin-
cipally machine learning (ML) – have led to astonishingly
rapid progress in generative processes. Research in Con-
structive Machine Learning has led to impressive generative
results in both the arts and sciences, including painting, mu-
sic, poetry, gaming, drug design, and gene design – usually
in collaboration with domain experts. Our concern is that
the sheer size and combined resources of the ML commu-
nity may render generative work in CC untenable.

CC has long been seen as more than “mere generation”3,
with many other aspects of the creative act modelled, in par-
ticular aesthetic judgements, but also (more controversially)
the importance of framing information and meta-level pro-
cesses. As generative results in other areas of AI become
more sophisticated, we may need to focus on these other as-
pects of the creative act. However, even with this in mind,
we are concerned that the arts domains may reach a satura-
tion point for CC: as the novelty and backstory of computer-
generated art grows old, society may question whether and
why we want more computer-produced artistic artefacts. In
order to keep the field alive, we propose that as well as focus-
ing on other aspects of creativity, we find other application
domains.

The Understandability Problem in Science
Roger Newton’s quote above about the primary aim of phys-
ical scientists being to understand and explain nature is un-
controversial, but difficult to unpack. Ever since the entirety

3The slogan at the 2012 ICCC conference was “scoffing at mere
generation for more than a decade.” - although this has been chal-
lenged, for instance by (Ventura 2016))

of our collective scientific knowledge became too big for a
single polymath to comprehend, we have had to outsource
our understanding to others. The institutionalised ways in
which trust of others’ understanding and progress is handled
started with the early universities, and developed with the
invention of the printing press, academic journals, the peer
review process and so on. Knowledge and understanding
is a social process, as argued in (Martin and Pease 2013),
but even in the human-only case this gets complicated. The
longest proof in history, of the Classification of finite sim-
ple groups, is over 10,000 pages, spread across 500 or so
journal articles, by over 100 different authors from around
the world, and took 110 years to complete. What does un-
derstanding mean here? Perhaps a handful of people under-
stand the proof in its entirety, and when they die it is not
obvious that any single person will ever again understand
the entire proof (in part because it may be replaced with a
simpler proof).

Shinichi Mochizuki’s 500-page proof in 2012 of the abc
conjecture provides another perspective on the importance
of understanding in mathematics. The abc conjecture, pro-
posed in 1985, on relationships between prime numbers, is
considered to be one of the most important conjectures in
number theory (more significant than Fermats Last Theo-
rem – in fact Fermats Last Theorem would be a corollary of
the proof). A proof would be “one of the most astounding
achievements of mathematics of the twenty-first century.”
[Goldfeld, in (Ball 2012)]. Mochizuki has a good track
record as a mathematician, having proved “extremely deep”
theorems in the past [Conrad in (Ball 2012)]. The prob-
lem is that the techniques and mathematical objects which
Mochizuki has developed to use in his proof are so strange
and new that it would take a reviewer or mathematical col-
league most of their career to understand them, before they
were able to understand and verify the proof. Despite some
efforts from Mochizuki and a handful of his followers to
make his work accessible, currently his proof is neither pub-
lished nor accepted by mainstream mathematicians, for the
simple reason that they don’t understand it.

Crowd-sourced mathematics, in which open conjectures
are solved collaboratively via online fora (amongst other
things), has been used for around ten years now by a sub-
set of the mathematical community as a new way of produc-
ing mathematics through collaboration and sharing (Gowers
and Nielsen 2009). Neilsen argues that this has resulted in
“amplifying collective intelligence” in his book Reinventing
Discovery (Nielsen 2011). It has certainly resulted in some
original and significant new proofs. Here it is perfectly pos-
sible (in fact it would be surprising if it were not the case)
for a person to be a co-author but not fully understand the
proof in their paper.

Adding computers to the social process, to form a com-
bination of people, computers, and mathematical archives
to create and apply mathematics – a “mathematics social
machine” (Martin and Pease 2013) – further complicates
matters. Automated theorem proving is the task of deciding
whether a given formal statement follows from a given set of
premises (Sutcliffe and Suttner 2001). The least informative
approaches, algorithms based on the resolution rule (Robin-



son and others 1965), produce merely a “yes”, “no” or “un-
known” response. Not only is this devoid of explanation,
but it also hides the effects of any bugs; requiring the user to
either trust the results, or verify the implementation.

Both of these issues can be mitigated by having the system
instead generate a proof object: a formal argument for why a
given statement follows or does not follow. Once generated,
a proof object’s validity can be checked without requiring
any knowledge of how it was created, thus avoiding the need
to trust or verify the (potentially complicated) search and
generation procedures. The de Bruijn criterion (Barendregt
and Wiedijk 2005) describes theorem provers which produce
proof objects that are trivial to check by independent proof
checker programs (which are themselves easily verified, due
to their simplicity); examples are Coq (Barras et al. 1997)
and Isabelle (Nipkow, Paulson, and Wenzel 2002).

Proof objects are not a complete solution to understand-
ability, since they can still be quite inscrutable to human
users. This often depends on how closely the chosen for-
mal system is able to encode the user’s ideas: for example,
the formal proof of the Kepler Conjecture was performed
using a system of Higher Order Logic (HOL) (Hales et al.
2015) whose proof objects (natural-deduction style deriva-
tions), whilst tedious, are in principle understandable to a
user experienced with both the software and problem do-
main. The same cannot be said of the Boolean Pythagorean
Triples problem, a statement of Ramsey theory involving
the structure of the natural numbers. Rather than taking a
high-level approach like HOL, the authors of (Heule, Kull-
mann, and Marek 2016) analysed sets {0..n} for larger and
larger n, encoding these restricted versions of the problem
into the language of boolean satisfiability (SAT), and found
that the problem is unsatisfiable for n = 7825, and hence for
the natural numbers as a whole. In this case, the proof ob-
ject demonstrates this unsatisfiability using 200 terabytes of
propositional logic clauses (compressable to 68 gigabytes).
Not only is this far too much for any human to comprehend,
but the concepts used in the proof (boolean formulae) are
several layers removed from the actual problem statement
(natural numbers, subsets and pythagorean triples).

Whilst “low level” formalisms like SAT are less un-
derstandable or explanatory for users, they are far more
amenable to automation than more expressive logics. De-
spite the proof for the Boolean Pythagorean Triples prob-
lem being many orders of magnitude larger than that of
the Kepler Conjecture, the latter is well beyond the abil-
ity of today’s automated theorem provers due to its encod-
ing in HOL. Instead, it took 22 collaborators 9 years just
to formalise the proof (Hales had previously produced a
less formal proof, hundreds of pages long and accompanied
by unverified software; yet another reminder that human-
generated artefacts are not necessarily understandable ei-
ther).

The situation is even worse in automated scientific dis-
covery. The widespread use of machine learning (ML) to
find patterns in scientific data has been criticised by Genev-
era Allen in her recent talk at the 2019 Annual Meeting of
the American Association for the Advancement of Science

(AAAS)4. She highlighted accuracy and reproducibility is-
sues with scientific discoveries made by machine-learning
techniques. Understandability is another huge problem with
such discoveries; often with a tradeoff between the general-
ity of an approach and how easily its resulting behaviour can
be understood. The understandability problem concerns this
last issue.

Proposed solutions
Here we propose three different approaches that the CC
community can take to address the understandability prob-
lem. Each approach, at the same time, would solve the sat-
uration problem, by focusing on science. We end each sub-
section with a concrete recommendation towards a new Re-
search Programme in CC.

The “human-like computing” approach
Human-like computing research is a research programme de-
veloped for a UK funding initiative by the Engineering and
Physical Sciences Research Council. This programme “aims
to endow machines with human-like perceptual, reasoning
and learning abilities, which support collaboration and com-
munication with human beings.”, with one of the stated mo-
tivations to “inspire new forms of computation based on hu-
man cognition, especially on tasks where humans currently
exhibit superior abilities.”5

We believe that a focus on more human-like computing
would result in systems whose output more closely resem-
bled human produced work. If this were the case, then we
hypothesise that there would be greater understandability.
In the context of science and mathematics, there is much
theoretical work on how people work in these domains and
how knowledge is constructed. For instance, the philoso-
phy of informal mathematics and the study of mathematical
practice and cultures are thriving communities with annual
research events and a good number of published books and
papers. We can build on this work by building human-like
computing systems which model theoretical findings.

The CC community is particularly well equipped to work
in this research programme. The FACE evaluation model
(Colton, Pease, and Charnley 2011) is based on the mul-
tiple aspects involved in the human creative act, includ-
ing aesthetic judgements, concept development, framing
information and meta-level processes which can generate,
for instance, the means by which an artefact is generated.
This might be reflected in automated theory formation ap-
proaches to Automated Reasoning, which consider a far
wider view of mathematical knowledge production than the
traditional narrow focus of Automated Theorem Proving, in-
cluding the automatic generation and evaluation of new con-
jectures, concepts, examples explanations, and so on (see
(Pease, Colton, and Charnley 2013) for an example). In
some ways, given the closeness of some (aspects of some)
sciences to artistic domains, this may be low hanging fruit

4https://eurekalert.org/pub releases/2019-02/ru-
cwt021119.php

5https://epsrc.ukri.org/newsevents/pubs/human-like-
computing-strategy-roadmap/



for system developers to apply their systems to scientific and
mathematical domains.

Recommendation 1: Apply your system to scientific
domains.

The “Framing ” approach
Enhancing software with explanatory functionality would
also help to mitigate the understandability problem. The
“F” from the FACE model stands for Framing, and we advo-
cate a dual-approach of software generating framing infor-
mation alongside an artefact, problem solution or new data
pattern. We foresee this being an increasingly important area
of research in CC, with an increasing level of sophistication:
from explanation to justification to argument and dialogue
with a user about the value, method of production, moti-
vation etc behind output. How framing information should
be developed is a research programme in its own right. For
now, we discuss greater and lesser understandability in terms
of describing the processes underlying the generative act and
consider these for ML approaches.

Many ML approaches can be characterised as construct-
ing a computer program (or “model”) consisting of two
parts: an overall structure or architecture, which remains
fixed; and a set of adjustable parameters, which are inferred
or “learned” from data (e.g. training data of desired in-
put/output examples). One particularly simple architecture
is the decision tree: nested boolean queries of the input, of-
ten used for classification (Safavian and Landgrebe 1991).
These queries are parameters, and are chosen based on how
efficiently they separate the classes given in the training data.
Decision trees are nominally understandable, since their be-
haviour on a given input traces a single path through these
queries; yet they perform poorly compared to other ML al-
gorithms. The random forest approach yields better results
by combining many decision trees and having them vote on
the overall outcome (Breiman 2001), although such ensem-
ble behaviour is more difficult to reason about than that of a
single tree.

Recent research has focused on highly expressive classes
of models such as differentiable programming (Wang et
al. 2018), whose architectures output not only a (numer-
ical) answer, but also partial derivatives with respect to
the parameters; and probabilistic programming, which sam-
ples from a distribution conditioned on the training data.
Both frameworks allow arbitrary architectures, specified via
Turing-complete languages, and provide efficient, compos-
able methods for optimising the parameters (e.g. Stochastic
Gradient Descent and Markov Chain Monte Carlo, respec-
tively) to minimise arbitrary loss functions (e.g. the squared
output error on a training data set).

With such expressive formalisms, the conflict between
the generality of a model and its understandability becomes
clear. Task-specific architectures require fewer parameters
than general-purpose approaches and perform well with lit-
tle training data, for example hand-written characters can be
classified based on a single example if we allow our model to
assume the given images are generated by pen strokes (Lake,
Salakhutdinov, and Tenenbaum 2015). Likewise we can in-

fer parameters of a 3D scene (such as object position and
lighting) from images if we embed a ray-tracer into our
model (Li et al. 2018); embedding a physics engine can
provide predictions about these scenes, which are useful e.g.
for robot controllers (Degrave et al. 2016).

The parameters of such programs are easily understood:
they describe the pen strokes, geometric and physical prop-
erties of the simulated system, inferred from the given im-
ages. Framing information which describes the processes
underlying the generative act could be generated; for in-
stance:

• Decision trees: “Class x was chosen because y was greater
than z and ...”

• Random forests: “Class x was chosen because most trees
looking at y and z voted for it, ...”

• Handwriting recognition: “B was chosen because we saw
one long stroke and two curved strokes”

• The robot controller: “The motor was engaged because
the pendulum had begun to rotate...”

However, such specificity makes these implementations
unsuitable for anything else. The choice of such high-level,
task-specific components is performed by the user, and en-
codes some of their domain knowledge into the structure of
the solution, such that it doesn’t have to be learned. This is
similar to how logics like HOL can directly represent high-
level concepts (e.g. natural numbers and sets) but whose
proof methods have limited reusability due to the difficulty
of automating such high-level reasoning.

At the other end of the spectrum we have differentiable
programs with general purpose architectures, like neural
networks (capable of universal function approximation (Fu-
nahashi 1989)). These are compositions of a large number
of identical sub-expressions (“neurons”), whose parameters
(“weights”) scale the input values, and hence the contribu-
tion of each sub-expression to the whole. Such architectures
encode essentially no domain knowledge, requiring much
larger training sets than task-specific algorithms in order
to “learn” these details. The behaviour of general purpose
models depends so heavily on their (many) parameters, that
understanding their behaviour becomes difficult and they are
often treated as inscrutable “black boxes”; akin to the large
(un)SAT proof described above.

Understanding exactly how these programs make their de-
cisions is an active area of research, known as explainable
artificial intelligence (XAI) (Došilović, Brčić, and Hlupić
2018; Doshi-Velez and Kim 2017; Molnar 2018), with pop-
ular approaches such as saliency maps (Simonyan, Vedaldi,
and Zisserman 2013) tending to reverse-engineer the factors
which lead to a model’s decisions (judging the saliency of
each pixel based on how strongly it would effect the output
prediction if adjusted). These methods appear intuitive, e.g.
producing visualisations highlighting a particular object in
a scene as the reason for its classification; akin to the proof
objects emitted by theorem provers. Yet this can obscure
the difficulty of interpreting such high-dimensional decision
boundaries. In particular, these explanations or justifications
can be fundamentally altered by imperceptible adjustments



to the input (Ghorbani, Abid, and Zou 2017). Similar ad-
justments can also change a model’s output, leading to the
field of adversarial machine learning (Goodfellow, Shlens,
and Szegedy 2014); adjustments to even a single pixel can
not only cause a system to mislabel an input, but to give high
confidence to its erroneous result (Su, Vargas, and Sakurai
2019). Such fragility and opaqueness has important impli-
cations as these techniques begin to have decision making
applications in life-critical domains such as automotive con-
trol (Bojarski et al. 2016) and medical diagnosis (Esteva et
al. 2017).

Recommendation 2: Enhance your system with fram-
ing capabilities.

The “forgoing understandability” approach
It may be the case that, given the increase in power, gener-
ality and predictiveness that ML approaches give, we decide
to forgo understandability in science. As a community we
would be in a unique position to develop thinking on this,
and to answer questions such as whether we should try to re-
place understandability with something else. Previous work
such as (Colton et al. 2015) identifies stakeholder groups in
CC research and practice: this can be extended to scientists
and mathematicians to ensure that we develop in directions
which will be fruitful and useful to society.

Recommendation 3: Produce philosophical work on
what computational creativity should mean, and what
science done with computers should entail.

Concluding Remarks
Deep learning and ML are making inroads everywhere: gen-
erative arts, processors, windfarms, Go, machine vision, and
so on, and we need to consider as a community where this
leaves us. Our suggestion in this paper is to focus on science
and mathematics, where we have much to contribute.

Of course, both science and CC are fluid disciplines and
will evolve as technology and culture change. One possible
solution to the problems described here would be to adapt
our view of what is valuable, and what is an artefact. For
instance, could a neural network itself be considered to be
a scientific discovery? It may be that AI systems become
objects of study in the same way as the human brain is cur-
rently an object of study, with methods and approaches from
neural science, psychology, cognitive science and so on em-
ployed to understand an AI system and its behaviour and
interactions.

People are not naturally good at science. The history of
science and scientific methodology, the length of time it
takes to train a scientist and the high number of published
research findings in science which are considered to be false
or sub-standard6 all hint at the difficulty of the scientific en-
terprise. This is partially due to political and institutional

6Meta-scientific studies suggest that 85% of biomedical re-
search efforts are wasted (Macleod et al. 2014) and 90% of
respondents to a recent survey in Nature agreed that there is a
‘reproducibility crisis’ (Baker 2016) (see (Munafò et al. 2017;
Ioannidis 2005) for further details).

factors such as pressure to publish, conflicts of interest and
a culture which is often more competitive than collaborative;
but also partially due to the constant battle to avoid the large
number of cognitive biases that adversely affect our reason-
ing and judgements (Haselton, Nettle, and Andrews 2005;
Sutherland 2013). On the other hand, the arts – while also
difficult to do well – do not usually go against our natural
way of thinking, and can be seen as a celebration of our hu-
manity. In many ways science should be an obvious applica-
tion domain for computational creativity. This paper is a call
to arms for the whole CC community, to apply their systems
to scientific and mathematical domains, to enhance their sys-
tems with framing functionality, and to produce philosophi-
cal work on new directions in our field.
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