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Abstract

Science and mathematics are currently vastly under-
represented in the computational creativity (CC) com-
munity. This is at best a wasted opportunity, and at
worst a significant problem for the field. We discuss
why the CC community should apply their work to sci-
entific and mathematical domains, and argue that this
would be mutually beneficial for the domains in ques-
tion, demonstrating our position throughout the paper
by reference to examples. We propose a research pro-
gramme for building closer relationships between CC
and the scientific community, focusing on understand-
ability of science and the role that AI is currently play-
ing in scientific research.

Introduction
Despite the best efforts of successive ICCC organising com-
mittees and the computational creativity (CC) community,
CC has always attracted substantially more interest from
researchers in artistic than scientific and mathematical do-
mains. In their 2017 study of application domains in CC,
(Loughran and O’Neill 2017) found that, of 16 categories,
papers on Maths, Science and Logic accounted for only 3%
of the 353 papers on CC across 12 years. Of course, some
work is domain independent, or at least not easily assigned
to an academic discipline, such as the body of work on CC
and curiosity (for instance (Grace et al. 2017)). Even taking
this into account, it is clear that science and mathematics are
vastly under-represented in our community.

There are potentially many reasons why this may be the
case. Firstly, AI researchers in scientific domains may well
be doing creativity-related work in other contexts but not
engaging with the CC community. Automated reasoning
(usually deductive reasoning in mathematics) and automated
scientific discovery (usually inductive reasoning in a scien-
tific domain) are both thriving subfields of AI, with inter-
nationally recognised journals as outlets for publication and
engagement; certainly these will contain work relevant to
our field but couched in different terminology with different
methodologies. Secondly, it may be that other, practical, pri-
orities in scientific domains have led to a focus on techniques
such as search, data-mining and automated deduction. Since
these generate results of interest to domain experts, the more
difficult, fluid and tenuous concept of creativity may be seen

as unnecessary, risky or simply not a priority. This may par-
ticularly be the case given the various “AI winters” in the
twentieth century (the second of which ended in 1993, just
six years before the first workshop on CC), and the need for
AI to “prove itself” (Crevier 1993). Thirdly, it is very easy
to be a hobbyist game designer or artist or composer (or a
lapsed one), thus being an AI researcher by day with a side
interest in another domain. Many CC researchers are deeply
involved in the domains in which they work. By contrast,
it is harder to be an AI researcher and also an occasional
physicist, or vice versa. Fourthly, CC researchers may con-
sider that even if generation is possible within scientific do-
mains, evaluation is too difficult. How we should evaluate
our work and our systems has always been a contentious –
albeit important – issue in CC, with few proposed evalua-
tion metrics and the majority of researchers still arguing for
value along the lines of “we/people liked the system’s out-
put” or “we/people couldn’t distinguish the system’s output
from human produced work” (Jordanous 2014). It might be
the case that in science, the main evaluation metric – “is it
true?”, or “does it work?” – is considered simply too expen-
sive or difficult to demonstrate. Even if evaluation is pos-
sible, we may be more prone to dismissing initial results
as uninteresting in science than in artistic domains. For in-
stance, we may get a greater sense of progress from a system
working in game design which outputs a new (rather basic)
game, than one working in geology which outputs a new
(rather basic) result.

We argue here that neglecting scientific and mathematics
domains in CC is at best a wasted opportunity, and at worst
a significant problem for the field. Rapid advances in ML
mean that the status of generative work in CC may be unten-
able, with further problems of authenticity and possible sat-
uration in the arts. We call this the Identity Problem. We be-
lieve that it is essential to the health of our field that we reach
out as a community at this stage, both to domain experts in
science and maths and to those in related AI areas. The ben-
efits of doing so will go both ways. As AI is used more and
more in science, there is greater dependence on blackbox
machine learning systems. While providing greater predic-
tive power, this often comes at the cost of understanding.
We call this the Understandability Problem and argue that
it will become a big issue in science, which we will have
to address. Twenty years of thinking about computational



creativity has provided us with valuable tools for thinking
about these problems. This paper is a call to arms to CC
researchers to apply their work to science, thus solving both
the identity problem and the understandability problem.

Loughran and O’Neill argue that “tackling scientific, log-
ical or realistic issues could help bring the reputation of CC
away from a purely aesthetic domain towards developing so-
lutions for real world problems.” (Loughran and O’Neill
2017, p. 7) and that “It is imperative that the field remains
balanced as it grows and that we remember to reflect on
all areas of growth.” (Ibid.). In this paper we support and
present further arguments for this position, alongside practi-
cal recommendations for doing so.

What is science?
The concept of science is not a straightforward one. The
division of the origins of learning and systematic produc-
tion of new knowledge into disciplines as we know them
tends to takes into account at least some of the following:
methodologies, objects of study (which can be shared with
other disciplines), a body of accumulated knowledge (which
is generally not shared with other disciplines), theories and
concepts, terminology and an institutional manifesto (so that
it can reproduce itself) (Krishnan 2009, p. 9). Sciences in-
clude Natural sciences, which are subdivided into physical
sciences (chemistry, physics, astronomy), life sciences, or
biology (zoology, botany, ecology, genetics) and earth sci-
ence (geology, oceanography, meteorology, palaeontology);
Social sciences (psychology, sociology, economics, law, po-
litical science); Formal sciences (mathematics, logic, theo-
retical computer science, statistics); and Applied sciences,
which are subdivided into engineering (computer science,
civil engineering, electrical engineering, mechanical engi-
neering); health sciences (medicine, dentistry, pharmacy)
and agriculture. The number and variety of sciences makes
generalisations difficult, and core values vary accordingly.
However, values commonly associated in particular with the
(rather unhelpfully named) “hard sciences” include repeata-
bility, reproducibility, predictability, generality and under-
standability. This last value is particularly cherished: for
instance, Roger G. Newton sums it up as “The primary aim
of most physical scientists is to understand and explain the
workings of Nature.” (Newton 2000, p. 4).

The arts are possibly even harder to define. Indeed, Gallie
specifically uses “Art” as an example of an essentially con-
tested concept (Gallie 1956). This is a concept, the definition
of which is “not resolvable by argument of any kind”, and
“the proper use of which inevitably involves endless disputes
about their proper uses on the part of their users.” (Gallie
1955 1956, p. 169). Julie Van Camp, writing in the con-
text of United States Congressional policy on arts education,
provides the following extensional definition: 1

The term ‘the arts’ includes, but is not limited to, mu-
sic (instrumental and vocal), dance, drama, folk art,
1A visualisation of the fields of knowl-

edge based on Wikipedia’s list of academic dis-
ciplines and sub-disciplines can be found here:
http://www.thingsmadethinkable.com/item/fields of knowledge.php

Science Arts
Aesthetic: truth beauty
Approach: problem-driven artefact-driven
Task: analytic generative
Terminology: discover create
Status: objective subjective
Goal: knowledge self-expression

Table 1: Possible differences between the sciences and the
arts

creative writing, architecture and allied fields, paint-
ing, sculpture, photography, graphic and craft arts, in-
dustrial design, costume and fashion design, motion
pictures, television, radio, film, video, tape and sound
recording, the arts related to the presentation, perfor-
mance, execution, and exhibition of such major art
forms, all those traditional arts practiced by the diverse
peoples of this country. (sic) and the study and appli-
cation of the arts to the human environment.2

As a starting point – generalising (and controversially) –
we could suggest some of the differences between the sci-
ences and the arts as shown in Table 1. Of course, the
real-world everyday lived experience of doing science or
doing art is far more complex than Table 1 would suggest.
Studies of interpretations of seismic data in geology, for in-
stance, show the large number of different expert interpre-
tations of the same seismic section, highlighting the subjec-
tivity involved (Bond et al. 2007). These interpretations
are used to analyse subsurface geology, and form the ba-
sis for many exploration and extraction decisions. Even in
cases where interpreters report that an interpretation is rel-
atively straightforward, there are significant differences in
interpretation, leading to significantly different predictions,
for instance about gross pore volume or gross rock volume
(Rankey 2003). While clearly objectivity is the goal here,
such studies may suggest that this aspect of geological prac-
tice is closer to visual art interpretation than it is to some
other scientific domains.

Similarly, studies of the backstage production of math-
ematics show that beauty is often a guiding value (Inglis
and Aberdein 2015); there is a high level of disagreement
amongst experts about the validity of certain proofs (Inglis
et al. 2013); and proofs and theories are often considered to
be constructed rather than discovered (Lakatos 1976). Less
structured knowledge such as our ability to reason logically
has been shown to be highly context dependent (for instance,
participants in the Wason Selection Task were unable to
solve a logical problem at an abstract level but could solve
it correctly when it was framed in a familiar context (Wa-
son and Shapiro 1971)); constructing grounding metaphors
to the physical world and abstract linking metaphors found
to be fundamental to our understanding and construction
of mathematical knowledge (Lakoff and Núñez 2000); and
even the language in which reasoning occurs affecting our

2http://web.csulb.edu/ jvancamp/361 r8.html



preconceptions, perceptions and assumptions (Dehaene et
al. 2008; Barton 2009). An analogous story could be told
in the arts; for instance, in some contexts paintings are criti-
cised for being beautiful, with the goal being truth, or knowl-
edge (Derrida 1987).

Dibbets expresses the relationship between arts and sci-
ences well:

But in the end, we all do very much of the same. All
scientists, artists, composers and writers are intensively
occupied imagining something that does not yet exist.
They find themselves at the borders of areas where up
to then hardly anyone found himself, trying to solve
problems that are incomprehensible to others, trying to
answer questions no one has ever asked. Here, they
share a vision on things that are not yet real. (Dibbets
2002, p. 1)

Some of these interdisciplinary features are recognised in
curriculum design and teaching featuring transferable skills,
in which one skill may be learned within a scientific con-
text and developed or employed in an arts context, or vice
versa (see for instance (Gaff and Ratcliff 1996)). Indeed,
the STEM to STEAM movement (expanding the acronym
Science, Technology, Engineering, and Mathematical disci-
plines to include Art) explores the role of arts integration,
collaboration, and experience centered learning in knowl-
edge creation (Ghanbari 2015). Of course, the need for
so many interdisciplinary initiatives (and related concepts
such as transdisciplinarity, pluridisciplinarity, and multi-
disciplinarity) may suggest that some traditional discipline
boundaries are no longer drawn in a helpful way. The evolv-
ing role and functionality of AI systems further complicates
things. The focus of AI researchers, particularly in machine
learning, is often on the skills they hope to simulate rather
than a particular domain in which they are usually employed.
This may be more productive approach than the typical CC
focus on domain over skill.

The Identity Problem
in Computational Creativity

Recent developments in other areas of AI – principally
machine learning (ML) – have led to astonishingly rapid
progress in generative processes. Research in Constructive
Machine Learning has led to impressive generative results in
both the arts and sciences, including painting, music, poetry,
gaming, drug design, and gene design – usually in collabora-
tion with domain experts. Our concern is that the sheer size
and combined resources of the ML community may render
generative work in CC untenable, potentially leading to an
identity crisis in the field.

CC has long been seen as more than “mere generation”.3
Celebrating and automating other aspects of creative acts in
addition to generation – such as making aesthetic judge-
ments, producing framing information (background infor-
mation about the work) and finding new meta-level pro-

3The slogan at the 2012 ICCC conference was “scoffing at mere
generation for more than a decade.” - although this has been chal-
lenged, for instance by (Ventura 2016).

cesses – is partly what distinguishes us from other AI fields.
As generative results in neighbouring areas of AI become
more sophisticated, we may wish to focus on these other as-
pects of the creative act. Adding scientific domains to our
repertoire will further strengthen our communal identity and
enhance our value to other AI researchers and to domain ex-
perts in science.

There is also the question of whether CC output might
run up against natural boundaries in some areas of the arts.
For instance, it is possible that in highly expressive domains,
such as poetry, computationally produced poems will not be
taken seriously as valuable, given the lack of authenticity of
life experiences they have. This was discussed in (Colton,
Pease, and Saunders 2018), in which the authors argue that
a lack of authenticity is a looming issue in the arts. The
authors argue that:

As the quality of outputs increases, we can envisage an
uncanny valley stretching out, where audiences mar-
vel at the value of the products from creative systems,
while despairing at the lack of authenticity in the pro-
cess and in the nature of the originator. (Ibid., p7)

It is likely that authenticity is not so inherently valuable
in the sciences.

Furthermore, it may be the case that as the novelty
and backstory of computer-generated art wears off, society
questions whether we want more computer-produced paint-
ings or poems. The question as to whether we still want
more computer-generated science or mathematics, however,
seems less likely to be asked: we always want more sci-
ence and mathematics. We suggest this only hesitantly.
At the turn of the 20th century photography emerged as
a new technology, causing an explosion in productivity of
art. Flooding the market with images forced artists to rede-
fine their value and led to the creation of modern art, trans-
forming individual self-expression. Subareas of photogra-
phy have themselves developed as unique art forms, such as
wildlife photography and photojournalism. Art has further
been transformed through digital technology by filters and
editing. We can take inspiration from this: advances in AI
can saturate old ways of thinking, but naturally open up new
ones. If high quality computationally produced art becomes
common-place, art as we know it will be transformed for-
ever: a lot of concepts in art might collapse, but at the same
time new concepts which are currently unpredictable might
emerge. Of course, applying CC to science may equally sat-
urate certain fields or kinds of work. We raise this here to
begin a conversation on where CC in the arts may eventu-
ally lead, and as a further potential concern about focusing
all our energy on the arts.

The Understandability Problem in Science
Roger Newton’s quote above4 about the primary aim of
physical scientists being to understand and explain nature

4And many analogous quotes in mathematics, for instance:
“Mathematics is not about numbers, equations, computations, or
algorithms: it is about understanding” (William Thurston, quoted
in (Cook 2009, p. 76)).



is uncontroversial, but difficult to unpack. Ever since the
entirety of our collective scientific knowledge became too
large for a single polymath to comprehend, we have had to
outsource our understanding to others. The institutionalised
ways in which trust of others’ understanding and progress
is handled started with the early universities, and developed
with the invention of the printing press, academic journals,
the peer review process and so on. Knowledge and under-
standing is a social process, as argued in (Martin and Pease
2013), but even in the human-only case, this gets compli-
cated. The longest proof in history, of the Classification of
Finite Simple Groups (CFSG), is over 10,000 pages, spread
across 500 or so journal articles, by over 100 different au-
thors from around the world, and took 110 years to com-
plete. What does understanding mean here? Perhaps a hand-
ful of people understand the proof in its entirety, and when
they die it is not obvious that any single person will ever
again understand the entire proof (in part because it may be
replaced with a simpler proof).

In the example of the CFSG, it is considered sufficient
that someone once understood the proof. However in the
ongoing case of the abc conjecture, this is not the case.
This conjecture – proposed in 1985, on relationships be-
tween prime numbers – is considered to be one of the most
important conjectures in number theory (more significant
than Fermats Last Theorem; in fact Fermats Last Theorem
would be a corollary of the proof). A proof would be “one
of the most astounding achievements of mathematics of the
twenty-first century.” (Goldfeld, in (Ball 2012)). In 2012
Shinichi Mochizuki – a mathematician with a good track
record, having proved “extremely deep” theorems in the
past (Conrad in (Ball 2012)) – produced a 500-page proof.
The problem is that the techniques and mathematical objects
which Mochizuki has developed to use in his proof are so
new and strange that it would take a reviewer or mathemati-
cal colleague most of their career to understand them, before
they were able to understand and verify the proof. Despite
some efforts from Mochizuki and a handful of his follow-
ers to make his work accessible, currently his proof has nei-
ther been published nor accepted by mainstream mathemati-
cians, for the simple reason that they don’t understand it.

Crowd-sourced mathematics, in which open conjectures
are solved collaboratively via online communities, has been
used for around ten years now by a subset of the mathe-
matical community as a new way of producing mathemat-
ics through collaboration and sharing (Gowers and Nielsen
2009). Neilsen argues that this has resulted in “amplifying
collective intelligence” in his book Reinventing Discovery
(Nielsen 2011). It has certainly resulted in some original
and significant new proofs (for instance, the proofs of the
Bounded Gaps Between Primes and the Bounded intervals
with many primes, in the 2014 Polymath8 project (Castryck
et al. 2014; Polymath 2014; ?)). Here it is perfectly possible
(in fact it would be surprising if it were not the case) for a
person to be a co-author but not fully understand the proof
in their own paper.

Adding computers to the social process, to form a combi-
nation of people, computers, and mathematical archives to
create and apply mathematics – a “mathematics social ma-

chine” (Martin and Pease 2013) – further complicates mat-
ters. Take automated theorem proving, the task of deciding
whether a given formal statement follows from a given set
of premises (Sutcliffe and Suttner 2001). The least infor-
mative approach would be to produce merely a “yes”, “no”
or “unknown” response. Not only is this devoid of explana-
tion, but it also hides the effects of any bugs; requiring the
user to either trust the results, or verify the implementation.

This can be mitigated by having the system instead gener-
ate a proof object: a formal argument for why a given state-
ment follows or does not follow. Once generated, a proof ob-
ject’s validity can be checked without requiring any knowl-
edge of how it was created, thus avoiding the need to trust
or verify the (potentially complicated) search and genera-
tion procedures. Theorem provers which produce proof ob-
jects that are trivial to check by independent proof checker
programs (which are themselves easily verified, due to their
simplicity) satisfy the de Bruijn criterion (Barendregt and
Wiedijk 2005); examples are Coq (Barras et al. 1997) and
Isabelle/HOL (Nipkow, Paulson, and Wenzel 2002).

Proof objects are not a complete solution to understand-
ability, since they can still be quite inscrutable to human
users. This often depends on how closely the chosen for-
mal system is able to encode the user’s ideas: for example,
the formal proof of the Kepler Conjecture was performed
using a system of Higher Order Logic (HOL) (Hales et al.
2015) whose proof objects (natural-deduction style deriva-
tions), whilst tedious, are in principle understandable to a
user experienced with both the software and problem do-
main. The same cannot be said of the Boolean Pythagorean
Triples problem, a statement of Ramsey theory involving the
structure of the natural numbers. Rather than taking a high-
level approach like HOL, (2016) analysed sets {0 . . . n} for
larger and larger n, encoding these restricted versions of the
problem into the language of boolean satisfiability (SAT),
and found that the problem is unsatisfiable for n = 7825,
and hence for the natural numbers as a whole. In this case,
the proof object demonstrates this unsatisfiability using 200
terabytes of propositional logic clauses (compressable to 68
gigabytes). Not only is this far too much for any human
to comprehend, but the concepts used in the proof (boolean
formulae) are several layers removed from the actual prob-
lem statement (natural numbers, subsets and pythagorean
triples).

Whilst “low level” formalisms like SAT are less un-
derstandable or explanatory for users, they are far more
amenable to automation than more expressive logics. De-
spite the proof for the Boolean Pythagorean Triples prob-
lem being many orders of magnitude larger than that of
the Kepler Conjecture, the latter is well beyond the abil-
ity of today’s automated theorem provers due to its encod-
ing in HOL. Instead, it took 22 collaborators 9 years just
to formalise the proof (Hales had previously produced a
less formal proof, hundreds of pages long and accompanied
by unverified software; yet another reminder that human-
generated artefacts are not necessarily understandable ei-
ther).

The situation is even worse in automated scientific dis-
covery. The widespread use of machine learning (ML) to



find patterns in scientific data has been criticised by Genev-
era Allen in her recent talk at the 2019 Annual Meeting of
the American Association for the Advancement of Science
(AAAS)5. She highlighted accuracy and reproducibility is-
sues with scientific discoveries made by machine-learning
techniques. Understandability is another huge problem with
such discoveries; often with a tradeoff between the general-
ity of an approach and how easily its resulting behaviour can
be understood. The understandability problem concerns this
last issue.

Proposed solutions
Here we propose three different approaches that the CC
community can take to address the understandability prob-
lem. Each approach, at the same time, would solve the sat-
uration problem, by focusing on science. We end each sub-
section with a recommendation towards a new Research Pro-
gramme in CC.

The “human-like computing” approach
Human-like computing research is a research programme
developed for a UK funding initiative by the Engineering
and Physical Sciences Research Council.6 This programme
“aims to endow machines with human-like perceptual, rea-
soning and learning abilities, which support collaboration
and communication with human beings.”, with one of the
stated motivations to “inspire new forms of computation
based on human cognition, especially on tasks where hu-
mans currently exhibit superior abilities.”7

We believe that a focus on more human-like computing
would result in systems whose output more closely resem-
bled human produced work. If this were the case, then we
hypothesise that there would be greater understandability.
In the context of science and mathematics, there is much
theoretical work on how people work in these domains and
how knowledge is constructed. For instance, the philoso-
phy of informal mathematics and the study of mathematical
practice and cultures are thriving communities with annual
research events and a good number of published books and
papers. We can further this work by building human-like
computing systems which model theoretical findings.

The CC community is particularly well equipped to work
in this research programme. The FACE evaluation model
(Colton, Pease, and Charnley 2011) is based on the multiple
aspects involved in the human creative act. These include
aesthetic judgements; concept development; contextual,
framing information; and meta-level processes. This might
be reflected in automated theory formation approaches to
Automated Reasoning, which consider a far wider view of
mathematical knowledge production than the traditional nar-
row focus of Automated Theorem Proving, including the au-
tomatic generation and evaluation of new conjectures, con-
cepts, examples explanations, and so on (see (Pease, Colton,

5https://eurekalert.org/pub releases/2019-02/ru-
cwt021119.php

6http://hlc.doc.ic.ac.uk
7https://epsrc.ukri.org/newsevents/pubs/human-like-

computing-strategy-roadmap/

and Charnley 2013) for an example). In some ways, given
the closeness of some (aspects of some) sciences to artistic
domains, this may be low hanging fruit for system devel-
opers to apply their systems to scientific and mathematical
domains.

Recommendation 1: Apply your system to scientific
domains.

The “Framing ” approach
Enhancing software with explanatory functionality would
also help to mitigate the understandability problem. The “F”
from the FACE model stands for Framing, and we advocate
a dual-approach of software generating framing information
alongside an artefact, problem solution or new data pattern
(proof objects can be seen as a limited form of framing in-
formation). We foresee this being an increasingly important
area of research in CC, with an increasing level of sophis-
tication: from explanation to justification to argument and
dialogue with a user about the value, method of production,
motivation etc. behind output. How framing information
should be developed is a research programme in its own
right. For now, we discuss greater and lesser understand-
ability in terms of describing the processes underlying the
generative act and consider these for ML approaches.

Many ML approaches can be characterised as construct-
ing a computer program (or “model”) consisting of two
parts: an overall structure or architecture, which remains
fixed; and a set of adjustable parameters, which are in-
ferred or “learned” from data (e.g. training data of desired
input/output examples). One particularly simple architec-
ture is the decision tree: nested boolean queries of the in-
put, often used for classification (Safavian and Landgrebe
1991). These queries are parameters, and are chosen based
on how efficiently they separate the classes given in the
training data. Decision trees usually perform poorly com-
pared to other ML algorithms, but are nominally understand-
able since their behaviour on a given input traces a single
path through these queries, which could be turned into fram-
ing information such as “Class x was chosen because y was
greater than z...”. The random forest approach gives better
performance by combining many decision trees and having
them vote on the overall outcome (Breiman 2001), although
such ensemble behaviour is more difficult to reason about
than that of a single tree, and is hence harder to frame in an
understandable way. One approach might be to find patterns
in the votes, such as “Class x was chosen because most trees
looking at features y and z voted for it”.

Recent research has focused on highly expressive classes
of models such as differentiable programming (Wang et
al. 2018), whose architectures output not only a (numer-
ical) answer, but also partial derivatives with respect to
the parameters; and probabilistic programming, which sam-
ples from a distribution conditioned on the training data.
Both frameworks allow arbitrary architectures, specified via
Turing-complete languages, and provide efficient, compos-
able methods for optimising the parameters (e.g. Stochastic
Gradient Descent and Markov Chain Monte Carlo, respec-
tively) to minimise arbitrary loss functions (e.g. output error



for the training data).
With such expressive formalisms, the conflict between

the generality of a model and its understandability becomes
clear. Task-specific architectures require fewer parameters
than general-purpose approaches, perform well with little
training data, and are amenable to descriptive framing infor-
mation. For example, hand-written characters can be classi-
fied based on a single example if we allow our model to as-
sume the given images are generated by pen strokes (Lake,
Salakhutdinov, and Tenenbaum 2015), and these models
may allow descriptions such as “Character c was chosen be-
cause there appear to be x long strokes, y curved strokes,
etc.”. Likewise the parameters of a 3D scene (such as ob-
ject position and lighting) can be inferred from images if a
ray-tracer is embedded in the model (Li et al. 2018); em-
bedding a physics engine enables predictions about these
scenes, which are useful e.g. for robot controllers (Degrave
et al. 2016). Whilst more complicated than the previous
examples, such a controller could (in principle) justify its
actions based on interpretations of the model, such as “The
motor was engaged because the pendulum appeared to be
falling to the left”.

However, the specificity that makes these implementa-
tions understandable also makes them unsuitable for any
other task. The choice of such high-level, task-specific com-
ponents is performed by the user, and encodes some of their
domain knowledge into the structure of the solution, such
that it doesn’t have to be learned. This is similar to how high-
level logics can represent relevant domain concepts (like nat-
ural numbers and sets), yet proof methods making use of this
have limited reusability due to the difficulty of automating
such high-level reasoning.

At the other end of the spectrum are general purpose
architectures, like artificial neural networks (differentiable
programs capable of universal function approximation (Fu-
nahashi 1989)). These are compositions of a large number
of identical sub-expressions (“neurons”), whose parameters
(“weights”) scale their input values, and hence the contri-
bution of each sub-expression to the whole. Such archi-
tectures encode essentially no domain knowledge, requir-
ing much larger training sets than task-specific algorithms
in order to “learn” these details. So much of these general
purpose models’ behaviour comes from tuning their (many)
parameters, that understanding or describing their high-level
behaviour is difficult; indeed they are often treated as in-
scrutable “black boxes”, akin to the large (un)SAT proof de-
scribed above.

Understanding exactly how such programs make their de-
cisions is an active area of research, known as explainable
artificial intelligence (XAI) (Došilović, Brčić, and Hlupić
2018; Doshi-Velez and Kim 2017; Molnar 2019). Saliency
maps are a popular form of framing information (Simonyan,
Vedaldi, and Zisserman 2013), which reverse-engineer the
factors which lead to a particular decision made by a model
(for example judging the saliency of input pixels by how
strongly they each effect the output prediction if adjusted).
These methods appear intuitive, e.g. producing visualisa-
tions highlighting a particular object in a scene as the reason
for its classification; yet this can obscure the difficulty of

interpreting such high-dimensional decision boundaries. In
particular, reasonable justifications (such as classifying an
image as a butterfly, with high saliency given to those pix-
els which show the butterfly) can be fundamentally altered
by imperceptible adjustments to the input (Ghorbani, Abid,
and Zou 2017) (in this case choosing butterfly based only on
the background vegetation). Similar adjustments can also
change a model’s output, leading to the field of adversarial
machine learning (Goodfellow, Shlens, and Szegedy 2014);
adjustments to even a single pixel can not only cause a sys-
tem to mislabel an input, but to give high confidence to its
erroneous result (Su, Vargas, and Sakurai 2019).

Attempts to understand the internal operation of mod-
els themselves include techniques like activation maximisa-
tion (Erhan et al. 2009): iteratively perturbing the input to
maximise the value of a chosen internal component. The re-
sult is an input (usually an image) which provides a strong
stimulus for that one component, and hence visualises the
sorts of features that component has learned to detect. Simi-
lar techniques like deconvolution can also generate such im-
agery (Zeiler and Fergus 2014), but all require some degree
of qualitative interpretation is to understand what the system
may be focusing on. Alternative use cases for these methods,
like Google’s ”DeepDream”, perturb user-provided images
to maximise the activation of certain neurons of a pre-trained
model, which have learned to detect objects like faces or an-
imals, or artwork following a certain style, etc. The resulting
images resemble the original, but with an artificial form of
pareidolia (Mordvintsev, Olah, and Tyka 2015).

Whilst much attention has been focused on making the
outputs of ML systems more accurate and robust, there is
also a need for framing information which explains more, is
more understandable to users and less prone to misinterpre-
tation.

Recommendation 2: Enhance your system with fram-
ing capabilities.

The “forgoing understandability” approach
It may be the case that, given the increase in power, gen-
erality and predictiveness that ML approaches give, and the
increasing complexity and amount of scientific knowledge,
we decide to forgo understandability in science. As a com-
munity we would be in a unique position to develop thinking
on this, and to answer questions such as whether we should
try to replace understandability with something else. We
suggest identifying and engaging with stakeholder groups
in science and mathematics to ensure that we develop in di-
rections which will be fruitful and useful to society.

Another possible solution to the problems described here
would be to forego understandability in the current sense,
or rather to change our notion of what kind of thing we are
aiming to understand. For instance, could a neural network
itself be considered to be a scientific discovery, analogous to
the discovery of a new plant? It may be that AI systems be-
come objects of study in the same way as the human brain is
currently an object of study, with methods and approaches
from neural science, psychology, cognitive science and so
on employed to understand an AI system and its behaviour



and interactions. There is an interesting analogy between
ways in which we can “interrogate” a neural network, for
instance via generating inputs aligned to deep features (by
specifying a deep-level state, then “training” the input to get
close), and how we use introspection and analysis to under-
stand human learning. We’re gradually becoming cognitive
scientists and psychologists for the robots.8 This is already
an active research area, with (Jonas and K.P. 2017) offering
a cautionary tale. Again, as a community we would be in a
position to provide a unique perspective on this, having re-
flected on what constitutes an artefact and how they might
be evaluated as novel or significant discoveries.

Recommendation 3: Produce philosophical work on
what computational creativity should mean, and what
science done with computers should entail.

Concluding Remarks
Deep learning and ML are making inroads everywhere: gen-
erative arts, processors, Go, machine vision, and so on, and
we need to consider as a community where this leaves us.
Our suggestion in this paper is to focus on science and math-
ematics, where we have much to contribute.

People are not naturally good at science. The history of
science and scientific methodology, the length of time it
takes to train a scientist and the high number of published
research findings in science which are considered to be false
or sub-standard9 all hint at the difficulty of the scientific en-
terprise. This is partially due to political and institutional
factors such as pressure to publish, conflicts of interest and
a culture which is often more competitive than collaborative;
but also partially due to the constant battle to avoid the large
number of cognitive biases that adversely affect our reason-
ing and judgements (Haselton, Nettle, and Andrews 2005;
Sutherland 2013). On the other hand, the arts – while also
difficult to do well – do not usually go against our natural
way of thinking, and can be seen as a celebration of our hu-
manity. In many ways science should be an obvious applica-
tion domain for computational creativity. This paper is a call
to arms for the whole CC community, to apply their systems
to scientific and mathematical domains, to enhance their sys-
tems with framing functionality, and to produce philosophi-
cal work on new directions in our field.
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