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Abstract
Theory Exploration is a promising approach to improving the quality

and understanding of software. It extends previously existing methods
available through testing, in languages which are amenable to formal anal-
ysis such as those based on pure functional programming. Current theory
exploration techniques are limited by their use of exponential time algo-
rithms, which although thorough are ultimately limited to finding simple
properties of small systems. We propose a more powerful approach, which
uses machine learning algorithms to intelligently choose which parts of a
system to explore based on their similarity, hence focusing its efforts on
areas which are most likely to lead to discoveries.

1 Introduction

As computers and software become more sophisticated, and as our reliance
on them increases, the importance of understanding, predicting and verifying
these systems grows; which is undermined by their ever-increasing complexity.
The functional programming paradigm has been proposed for addressing these
issues [32], by constructing programs which are more amenable to mathematical
analysis. For example, in pure functional programming all values are immutable:
defined once and never changed. Hence there is no way for a value to be altered
between the point it is introduced and the point it is used, unlike in many
imperative languages where we may have to search the whole program to ensure
the value is not altered by any intermediate code. Similarly, the results of pure
functions cannot depend on any state other than their arguments, and hence
will always produce repeatable results. By making state implicit in this way,
powerful type systems can be used to constrain the behaviour of programs, and
to give a rich, composable structure to data.

Whilst use of pure functional programming languages, like Haskell and Idris,
is relatively rare, their features are well suited to common software engineer-
ing practices like unit testing ; where tasks are broken down into small, easily-
specified “units”, and tested in isolation for a variety of use-cases. Functional
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ideas are thus spreading to mainstream software engineering in a more dilute
form; seen, for example, in the recent inclusion of first-class functions in Java
[34] and C++ [81].

Functional programming is also well suited to less-widespread practices, such
as property checking (as popularised by QuickCheck) and theorem proving,
which are promising methods for increasing confidence in software, yet can be
prohibitively expensive. Here we investigate how the recent theory exploration
approach can lower the effort required to pursue these goals, and in particular
how machine learning techniques can mitigate the costs of the combinatorial
algorithms involved.

Our contributions are:

1. The application of machine learning algorithms to theory exploration, for
intelligently discovering interesting sub-sets of Haskell libraries, which are
more tractable to explore.

2. A novel feature extraction method for transforming Haskell expressions
into a form amenable to off-the-shelf learning algorithms.

3. An implementation of these feature extraction and theory exploration ap-
proaches.

4. A comparison of our methods with existing approaches, both for theory
exploration in Haskell, and for machine learning in other languages.

We begin in §2 by providing a formal context for analysing Haskell expres-
sions (§2.1) and describe the QuickSpec theory exploration system (§2.3). We
give a brief overview of testing approaches and how they relate to Haskell (§2.2),
as well as the machine learning approaches we are building on (§2.4.1). We dis-
cuss our contributions in more depth in §3, and provide implementation details
in §4. A variety of related work is surveyed in §5, we briefly evaluate our im-
plementations in §6 and give several potential directions for future research in
§7.

2 Background

2.1 Haskell
We decided to focus on theory exploration in the Haskell programming language
as it has mature, state-of-the-art implementations (QuickSpec [15] and Hip-
Spec [14]). This is evident from the fact that the state-of-the-art equivalent for
Isabelle/HOL, the Hipster [36] system, is actually implemented by translating
to Haskell and invoking HipSpec.

Haskell is well-suited to programming language research; indeed, this was
a goal of the language’s creators [54]. Like most functional programming lan-
guages, Haskell builds upon λ-calculus, with extra features such as a strong type
system and “syntactic sugar” to improve readability. For simplicity, we will focus
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expr → Var id

| Lit literal
| App expr expr
| Lam L expr
| Let bind expr
| Case expr L [alt]

| Type
id → Local L

| Global G
| Constructor D

literal → LitNum N
| LitStr S

alt → Alt altcon expr [L]

altcon → DataAlt D
| LitAlt literal
| Default

bind → NonRec binder

| Rec [binder]

binder → Bind L expr

Where: S = string literals
N = numeric literals
L = local identifiers
G = global identifiers
D = constructor identifiers

Figure 1: Simplified syntax of GHC Core in BNF style. [] and (, ) denote
repetition and grouping, respectively.
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data Nat = Z
| S Nat

plus :: Nat -> Nat -> Nat
plus Z y = y
plus (S x) y = S (plus x y)

mult :: Nat -> Nat -> Nat
mult Z y = Z
mult (S x) y = plus y (mult x y)

odd :: Nat -> Bool
odd Z = False
odd (S n) = even n

even :: Nat -> Bool
even Z = True
even (S n) = odd n

Figure 2: A Haskell datatype for Peano numerals with some simple arithmetic
functions, including mutually-recursive definitions for odd and even. Bool is
Haskell’s built in boolean type, which can be regarded as data Bool = True |
False.

on an intermediate representation of the GHC compiler, known as GHC Core,
rather than the relatively large and complex syntax of Haskell proper. Core
is based on System FC, but for our machine learning purposes we are mostly
interested in its syntax; for a more thorough treatment of System FC and its
use in GHC, see [77, Appendix C].

The sub-set of Core we consider is shown in Figure 1; compared to the full
language 1 our major restriction is to ignore type hints (such as explicit casts,
and differences between types/kinds/coercions). For brevity, we also omit sev-
eral other forms of literal (machine words of various sizes, individual characters,
etc.), as their treatment is similar to those of strings and numerals. We will use
quoted strings to denote names and literals, e.g. Local "foo", Global "bar",
Constructor "Baz", LitStr "quux" and LitNum "42", and require only that
they can be compared for equality.

Figure 2 shows some simple Haskell function definitions, along with a custom
datatype for Peano numerals. The translation to our Core syntax is routine, and
shown in Figure 3. Although the Core is more verbose, we can see that similar
structure in the Haskell definitions gives rise to similar structure in the Core;
for example, the definitions of odd and even are identical in both languages,
except for the particular identifiers used. It is this close correspondence which

1As of GHC version 7.10.2, the latest at the time of writing.
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plus

Lam "a" (Lam "y" (Case (Var (Local "a"))
"b"
(Alt (DataAlt "Z") (Var (Local "y")))
(Alt (DataAlt "S") (App (Var (Constructor "S"))

(App (App (Var (Global "plus"))
(Var (Local "x")))

(Var (Local "y"))))
"x")))

mult

Lam "a" (Lam "y" (Case (Var (Local "a"))
"b"
(Alt (DataAlt "Z") (Var (Constructor "Z")))
(Alt (DataAlt "S") (App (App (Var (Global "plus"))

(Var (Local "y")))
(App (App (Var (Global "mult"))

(Var (Local "x")))
(Var (Local "y"))))

"x")))

odd

Lam "a" (Case (Var (Local "a"))
"b"
(Alt (DataAlt "Z") (Var (Constructor "False")))
(Alt (DataAlt "S") (App (Var (Global "even"))

(Var (Local "n")))
"n"))

even

Lam "a" (Case (Var (Local "a"))
"b"
(Alt (DataAlt "Z") (Var (Constructor "True")))
(Alt (DataAlt "S") (App (Var (Global "odd"))

(Var (Local "n")))
"n"))

Figure 3: Translations of functions in Figure 2 into the Core syntax of Figure
1. Notice the introduction of explicit λ abstractions (Lam) and the use of Case
to represent piecewise definitions. Fresh variables are chosen arbitrarily as "a",
"b", etc.
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allows us to analyse Core expressions in place of their more complicated Haskell
source.

Note that we exclude representations for type-level entities, including datatype
definitions like that of Nat. GHC can represent these, but in this work we only
consider reducible expressions (i.e. value-level bindings of the form f a b ... = ...).

2.2 QuickCheck
Although unit testing is the de facto industry standard for quality assurance
in non-critical systems, the level of confidence it provides is rather low, and
totally inadequate for many (e.g. life-) critical systems. To see why, consider
the following Haskell function, along with some unit tests:

factorial 0 = 1
factorial n = n * factorial (n-1)

fact_base = factorial 0 == factorial 1
fact_increases = factorial 3 <= factorial 4
fact_div = factorial 4 == factorial 5 ‘div‘ 5

The intent of the function is to map an input n to an output n!. The tests
check a few properties of the implementation, including the base case, that
the function is monotonically increasing, and a relationship between adjacent
outputs. However, these tests will not expose a serious problem with the im-
plementation: it diverges on half of its possible inputs!

All of Haskell’s built-in numeric types allow negative numbers, which this
implementation doesn’t take into account. Whilst this is a rather trivial ex-
ample, it highlights a common problem: unit tests are insufficient to expose
incorrect assumptions. In this case, our assumption that numbers are positive
has caused a bug in the implementation and limited the tests we’ve written.

If we do manage to spot this error, we might capture it in a regression test
and update the definition of factorial to handle negative numbers, e.g. by
taking their absolute value:

factorial 0 = 1
factorial n = let nPos = abs n

in nPos * factorial (nPos - 1)

fact_neg = factorial 1 == factorial (-1)

However, this is still not enough, since this function will also accept fractional
values2, which will also cause it to diverge. Clearly, by choosing what to test we
are biasing the test suite towards those cases we’ve already taken into account,
whilst neglecting the problems we did not expect.

2Since we only use generic numeric operations, the function will be polymorphic with a
type of the form forall t. Num t => t -> t, where Num t constrains the type variable t to
be numeric. In fact, Haskell will infer extra constraints such as Eq t since we have used == in
the unit tests.
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Haskell offers a partial solution to this problem in the form of property check-
ing. Tools such as QuickCheck separate tests into three components: a prop-
erty to check, which unlike a unit test may contain free variables; a source of
values to instantiate these free variables; and a stopping criterion. Here is how
we might restate our unit tests as properties:

fact_base = factorial 0 == factorial 1
fact_increases n = factorial n <= factorial (n+1)
fact_div n = factorial n == factorial (n+1) ‘div‘ (n+1)
fact_neg n = factorial n == factorial (-n)

The free variables (all called n in this case) are abstracted as function pa-
rameters; these parameters are implicitly universally quantified, i.e. we’ve gone
from a unit test asserting factorial(3) ≤ factorial(4) to a property asserting
∀n, factorial(n) ≤ factorial(n + 1). Notice that unit tests like fact_base are
valid properties; they just assert rather weak statements.

To check these properties, QuickCheck treats closed terms (like fact_base)
just like unit tests: pass if they evaluate to True, fail otherwise. For open terms,
a random selection of values are generated and passed in via the function param-
eter; the results are then treated in the same way as closed terms. The default
stopping criterion for QuickCheck (for each test) is when a single generated
test fails, or when 100 generated tests pass.

The ability to state universal properties in this way avoids some of the bias
we encountered with unit tests. In the factorial example, this manifests in
two ways:

• QuickCheck cannot test polymorphic functions; they must bemonomor-
phised first (instantiated to a particular concrete type). This is a technical
limitation, since QuickCheck must know which type of values to gener-
ate, but in our example it would bring the issue with fractional values to
our attention.

• The generators used by QuickCheck depend only on the type of value
they are generating: since Int includes positive and negative values, the
Int generator will output both. This will expose the problem with nega-
tive numbers, which we weren’t expecting.

Property checking is certainly an improvement over unit testing, but the
problem of tests being biased towards expected cases remains, since we are
manually specifying the properties to be checked.

We can reduce this bias further through the use of theory exploration tools,
such as QuickSpec and HipSpec. These programs discover properties of a
“theory” (e.g. a library), through a combination of brute-force enumeration,
random testing and (in the case of HipSpec) automated theorem proving.

2.3 Theory Exploration
In this work we consider the problem of (automated) theory exploration, which
includes the ability to generate conjectures about code, to prove those conjec-
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tures, and hence output novel theorems without guidance from the user. The
method of conjecture generation is a key characteristic of any theory exploration
system, although all existing implementations rely on brute force enumeration
to some degree.

We focus on QuickSpec [15], which conjectures equations about Haskell
code (these may be fed into another tool, such as HipSpec, for proving). These
conjectures are arrived at through the following stages:

1. Given a typed signature Σ and set of variables V , QuickSpec generates
a list terms containing the constants (including functions) from Σ, the
variables from V and type-correct function applications f(x), where f and
x are elements of terms . To ensure the list is finite, function applications
are only nested up to a specified depth (by default, 3).

2. The elements of terms are grouped into equivalence classes, based on their
type.

3. Each variable is instantiated to a particular value, generated randomly by
QuickCheck.

4. For each class, the members are compared (using a pre-specified function,
such as equality ==) to see if these instantiations have caused an observable
difference between members. If so, the class is split up to separate such
distinguishable members.

5. The previous steps of variable instantiation and comparison are repeated
until the classes stabilise (i.e. no differences have been observed for some
specified number of repetitions).

6. A set of equations are then conjectured, relating each class’s members.

Such conjectures can be used in several ways: they can be simplified for
direct presentation to the user (by removing any equation which can be derived
from the others by rewriting), sent to a more rigorous system like HipSpec or
Hipster for proving, or even serve as a background theory for an automated
theorem prover [14].

As an example, we can consider a simple signature containing the expressions
from Figure 2:

ΣNat = {Z, S, plus, mult, odd, even}

Together with a set of variables, say VNat = {a, b, c}, QuickSpec’s enumer-
ation will resemble the following:

termsNat = [Z, S, plus, mult, odd, even, a, b, c, S Z, S a, S b,

S c, plus Z, plus a, . . . ]
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plus a b = plus b a
plus a Z = a

plus a (plus b c) = plus b (plus a c)
mult a b = mult b a
mult a Z = Z

mult a (mult b c) = mult b (mult a c)
plus a (S b) = S (plus a b)
mult a (S b) = plus a (mult a b)

mult a (plus b b) = mult b (plus a a)
odd (S a) = even a

odd (plus a a) = odd Z
odd (times a a) = odd a

even (S a) = odd a
even (plus a a) = even Z

even (times a a) = even a
plus (mult a b) (mult a c) = mult a (plus b c)

Figure 4: Equations conjectured by QuickSpec for the functions in Figure 2;
after simplification.

Notice that functions such as plus and mult are valid terms, despite not
being applied to any arguments. In addition, Haskell curries functions, so these
binary functions will be treated as unary functions which return unary functions.
This is required as the construction of terms applies functions to one argument
at a time.

These terms will be grouped into five classes, one each for Nat, Nat -> Nat,
Nat -> Nat -> Nat, Nat -> Bool and Bool. As the variables a, b and c are
instantiated to various randomly-generated numbers, these equivalence classes
will be divided, until eventually the equations in Figure 4 are conjectured.

Although complete, this enumeration approach is wasteful: many terms are
unlikely to appear in theorems, which requires careful choice by the user of what
to include in the signature. Here we know that addition and multiplication are
closely related, and hence obey many algebraic laws. Our machine learning
technique aims to predict these kinds of relations between functions, so we can
create small signatures which nevertheless have the potential to give rise to
many equations.

QuickSpec (and HipSpec) is also compatible with Haskell’s existing test-
ing infrastructure, such that an invocation of cabal test can run these tools
alongside more traditional QA tools like QuickCheck, HUnit and Criterion.

In fact, there are similarities between the way a TE system like QuickSpec
can generalise from checking particular properties to inventing new ones, and
the way counterexample finders like QuickCheck can generalise from testing
particular expressions to inventing expressions to test. One of our aims is to
understand the implications of this generalisation, the lessons that each can
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learn from the other’s approach to term generation, and the consequences for
testing and QA in general.

2.4 Clustering
Our approach to scaling up QuickSpec takes inspiration from two sources. The
first is relevance filtering, which makes expensive algorithms used in theorem
proving more practical by limiting the size of their inputs. We describe this
approach in more details in §5.3. Relevance filtering is a practical tool which
has existing applications in software, such as the Sledgehammer component of
the Isabelle/HOL theorem prover.

Despite the idea’s promise, we cannot simply invoke existing relevance fil-
ter algorithms in our theory exploration setting. The reason is that relevance
filtering is a supervised learning method, i.e. it would require a distinguished
expression to compare everything against. Theory exploration does not have
such a distinguished expression; instead, we are interested in relationships be-
tween any terms generated from a signature, and hence we must consider the
relevance of all terms to all other terms.

A natural fit for this task is clustering, which attempts to group similar
inputs together in an unsupervised way. Based on their success in discovering
relationships and patterns between expressions in Coq and ACL2 (in the ML4PG
and ACL2(ml) tools respectively), we hypothesise that clustering methods can
fulfil the role of relevance filters for theory exploration: intelligently breaking up
large signatures into smaller ones more amenable to brute force enumeration,
such that related expressions are explored together.

2.4.1 Feature Extraction

Before describing clustering in detail, we must introduce the idea of feature
extraction. This is the conversion of “raw” input data, such as audio, images
or (in our case) Core expressions, into a form more suited to machine learning
algorithms. By pre-processing our data in this way, we can re-use the same
“off-the-shelf” machine learning algorithms in a variety of domains.

We use a standard representation of features as a feature vector of numbers
x = (x1, . . . , xd) where xi ∈ R (we use bold face to represent vectors, including
feature vectors). 3 For learning purposes this has some important advantages
over raw expressions:

• All of our feature vectors will be the same size, i.e. they will all have
length (or dimension) d. Many machine learning algorithms only work
with inputs of a uniform size; feature extraction allows us to use these
algorithms in domains where the size of each input is not known, may
vary or may even be unbounded. For example, element-wise comparison
of feature vectors is trivial (compare the ith elements for 1 ≤ i ≤ d); for

3In fact, practical implementations will use an approximate format such as IEEE 754
floating point numbers.
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expressions this is not so straightforward, as their nesting may give rise
to very different shapes.

• Unlike our expressions, which are discrete, we can continuously transform
one feature vector into another. This enables many powerful machine
learning algorithms to be used, such as those based on gradient descent
or, in our case, arithmetic means.

• Feature vectors can be chosen to represent the relevant information in a
more compressed form than the raw data; for example, we might replace
verbose, descriptive identifiers with sequential numbers. This reduces the
input size of the machine learning problem, improving efficiency.

2.4.2 K-Means

Clustering is an unsupervised machine learning task for grouping n data points
using a similarity metric. There are many variations on this theme, but in our
case we make the following choices:

• For simplicity, we use the “rule of thumb” given in [53, pp. 365] to fix the
number of clusters at k = d

√
n
2 e.

• Data points will be d-dimensional feature vectors, as defined above.

• We will use euclidean distance (denoted e) as our similarity metric.

• We will use k-means clustering, implemented by Lloyd’s algorithm [49].

This is a standard setup, supported by off-the-shelf tools; in particular we
use the implementation provided by Weka [31], due to its use by ML4PG, which
makes our results more easily comparable.

Since k-means is iterative, we will use function notation to denote time steps,
so x(t) denotes the value of x at time t. We denote the clusters as C1 to Ck.
As the name suggests, k-means uses the mean value of each cluster, which we
denote as m1 to mk, hence:

mi
j(t) = Ci

j(t) =

∑
x∈Ci(t) xj

|Ci(t)|
for t > 0

Before k-means starts, we must choose seed values for mi(0). Many methods
have been proposed for choosing these values [2]. For simplicity, we will choose
values randomly from our data set S; this is known as the Forgy method.

The elements of each cluster Ci(t) are those data points closest to the mean
value at the previous time step:

Ci(t) = {x ∈ S | i = argmin
j

e(x,mj(t− 1))} for t > 0
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As t increases, the clusters Ci move from their initial location around the
“seeds”, to converge on a local minimum of the “within-cluster sum of squared
error” objective:

argmin
C

k∑
i=1

∑
x∈Ci

e(x,mi)2 (1)

3 Contributions

3.1 Recurrent Clustering
We adapt the methodology of recurrent clustering proposed in [27, 28], and
suggest a new recurrent clustering and feature extraction algorithm for Haskell,
which we then evaluate as a relevance filter technique for theory exploration.
As a clustering algorithm, the aim of recurrent clustering is to identify similar-
ities in a set of data points (in our case, Core expressions). Its distinguishing
characteristic is to combine feature extraction and clustering into a single recur-
sive algorithm (shown as Algorithm 1), which goes beyond a simple syntactic
characterisation, to allow the features of an expression to depend on those it
references. Here we describe our approach to recurrent clustering and compare
its similarity and differences to those of ML4PG and ACL2(ml).

We consider our algorithm in two stages: the first transforms the nested
structure of expressions into a flat feature vector representation; the second
converts the discrete symbols of Core syntax into features (real numbers), which
we will denote as the function φ.

3.1.1 Expressions to Vectors

Our recurrent clustering algorithm makes use of the k-means algorithm de-
scribed in §2.4.2, which considers the elements of a feature vector to be orthogo-
nal. Hence we must ensure that similar expressions not only give rise to similar
numerical values, but crucially that these values appear at the same position in
the feature vectors. Since different patterns of nesting can alter the “shape” of
expressions, simple traversals (breadth-first, depth-first, post-order, etc.) may
cause features from equivalent sub-expressions to be mis-aligned. For example,
consider the following expressions, which represent pattern-match clauses with
different patterns but the same body (Var (Local "y")):

X = Alt (DataAlt "C") (Var (Local "y"))
Y = Alt Default (Var (Local "y"))

If we traverse these expressions in breadth-first order, converting each token
to a feature using φ and padding to the same length with 0, we would get the
following feature vectors:
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breadthF irst(X) = (φ(Alt), φ(DataAlt), φ(Var), φ("C"), φ(Local), φ("y"))
breadthF irst(Y ) = (φ(Alt), φ(Default), φ(Var), φ(Local), φ("y"), 0 )

Here the features corresponding to the common sub-expression Local "y"
are misaligned, such that only 1

3 of features are guaranteed to match (others
may match by coincidence, depending on φ). These feature vectors might be
deemed very dissimilar during clustering, despite the intuitive similarity of the
expressions X and Y from which they derive.

If we were to align these features optimally, by padding the fourth column
rather than the sixth, then 2

3 of features would be guaranteed to match, making
the similarity of the vectors more closely match our intuition and depend less
on coincidence.

The method we use to “flatten” expressions, described below, is a variation
of breadth-first traversal which pads each level of nesting to a fixed size c (for
columns). This doesn’t guarantee alignment, but it does prevent mis-alignment
from accumulating across different levels of nesting. Our method would align
these features into the following vectors, if c = 2: 4

featureV ec(X) = (φ(Alt), 0, φ(DataAlt), φ(Var), φ("C"), φ(Local), φ("y"), 0)
featureV ec(Y ) = (φ(Alt), 0, φ(Default), φ(Var), φ(Local), 0, φ("y"), 0)

Here 1
2 of the original 6 features align, which is more than breadthF irst but

not optimal. Both vectors have also been padded by an extra 2 zeros compared
to breadthF irst; raising their alignment to 5

8 .
To perform this flattening we first transform the nested tokens of an expres-

sion into a rose tree of features, using the toTree function shown in Figure 5.
We follow the presentation in [11] and define rose trees recursively as follows: T
is a rose tree if T = (f, T1, . . . , TnT

), where f ∈ R and Ti are rose trees. Ti are
the sub-trees of T and f is the feature at T . nT may differ for each (sub-) tree;
trees where nT = 0 are leaves. The results are illustrated in Figure 6a.

These rose trees are then turned into matrices, as shown in Figure 6b, by
gathering the features of adjacent (sub-) trees at each level of nesting, and
concatenating them together (written as ++ ):

level(l, (f, T1, . . . , TnT
)) =

{
(f) if l = 1

level(l − 1, T1)++ . . .++ level(l − 1, TnT
) if l > 1

(2)
Given a rose tree t we can define its matrix M by Mi = pad(level(i, t)),

where pad either truncates or appends zeros, until the row has a fixed length
c. We also truncate/pad the number of rows to match a fixed number r. This

4In fact, the toTree function would ignore the constructor identifier "C" and never produce
the feature φ("C"). However, this example is still accurate in terms of laying out the features
as given.
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toTree(e) =



(φ(Var), toTree(e1)) if e = Var e1
(φ(Lit), toTree(e1)) if e = Lit e1
(φ(App), toTree(e1), toTree(e2)) if e = App e1 e2
(φ(Lam), toTree(e1)) if e = Lam l1 e1
(φ(Let), toTree(e1), toTree(e2)) if e = Let e1 e2
(φ(Case), toTree(e1), toTree(a1), . . . ) if e = Case e1 l1 a1 . . .

(φ(Type)) if e = Type
(φ(Local), (φ(l1))) if e = Local l1
(φ(Global), (φ(g1))) if e = Global g1
(φ(Constructor)) if e = Constructor d1
(φ(LitNum)) if e = LitNum n1
(φ(LitStr)) if e = LitStr s1
(φ(Alt), toTree(e1), toTree(e2)) if e = Alt e1 e2 l1 . . .

(φ(DataAlt)) if e = DataAlt g1
(φ(LitAlt), toTree(e1)) if e = LitAlt e1
(φ(Default)) if e = Default
(φ(NonRec), toTree(e1)) if e = NonRec e1
(φ(Rec), toTree(e1), . . . ) if e = Rec e1 . . .

(φ(Bind), toTree(e1)) if e = Bind l1 e1

Figure 5: Transforming Core expressions of Figure 1 to rose trees. The recur-
sive definition is mostly routine; each repeated element (shown as . . . ) has an
example to indicate their handling, e.g. for Rec we apply toTree to each ei.
We ignore values of D, since constructors have no internal structure for us to
compare; they can only be compared based on their types, which we do not
currently support. We also ignore values from S and N as it simplifies our later
definition of φ, and we conjecture that the effect on clustering real code is low.
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φ(Lam)

φ(Case)

φ(Alt)

φ("n")φ(App)

φ(Var)

φ(Local)

φ("n")

φ(Var)

φ(Global)

φ("even")

φ(DataAlt)

φ(Alt)

φ(Var)

φ(Constructor)

φ(DataAlt)

φ("b")φ(Var)

φ(Local)

φ("a")

φ("a")

(a) Rose tree for the expression odd from Figure 3. Each (sub-) rose tree is rendered
with its feature at the node and sub-trees beneath.

φ(Lam) 0 0 0 0 0
φ("a") φ(Case) 0 0 0 0
φ(Var) φ("b") φ(Alt) φ(Alt) 0 0
φ(Local) φ(DataAlt) φ(Var) φ(DataAlt) φ(App) φ("n")
φ("a") φ(Constructor) φ(Var) φ(Var) 0 0

φ(Global) φ(Local) 0 0 0 0
φ("even") φ("n") 0 0 0 0


(b) Matrix generated from Figure 6a, padded to 6 columns. Each level of nesting in
the tree corresponds to a row in the matrix.

(φ(Lam), 0, 0, 0, 0, 0, φ("a"), φ(Case), 0, 0, 0, 0, φ(Var), φ("b"), φ(Alt), φ(Alt), 0, 0, . . .

(c) (Prefix of) the feature vector for odd, constructed by concatenating the rows of 6b.
Ignoring padding, the features are in breadth-first order.

Figure 6: Feature extraction applied to the expression odd from Figure 3.
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way, all expressions give rise to r × c matrices, where the left-most features at
each each level are aligned.

Feature vectors are then simply the concatenation of matrix rows
M1++M2++ . . .++Mr, as shown in Figure 6c:

featureV ec(e) = pad(level(1, toTree(e)))++ . . .++ pad(level(r, toTree(e)))
(3)

3.1.2 Symbols to Features

We now define the function φ, which turns terminal symbols of Core syntax
into features (real numbers). For known language features, such as φ(Lam) and
φ(Case), we can enumerate the possibilities and assign a value to each, in a
similar way to [27] in Coq. We use a constant α to separate these values from
those of other tokens (e.g. identifiers), but the order is essentially arbitrary: 5

φ(Alt) = α φ(DataAlt) = α+ 1 φ(LitAlt) = α+ 2

φ(Default) = α+ 3 φ(NonRec) = α+ 4 φ(Rec) = α+ 5

φ(Bind) = α+ 6 φ(Let) = α+ 7 φ(Case) = α+ 8

φ(Local) = α+ 9 φ(Global) = α+ 10 φ(Constructor) = α+ 11

φ(Var) = α+ 12 φ(Lam) = α+ 13 φ(App) = α+ 14

φ(Type) = α+ 15 φ(Lit) = α+ 16 φ(LitNum) = α+ 17

φ(LitStr) = α+ 18

(4)

To encode local identifiers L we would like a quantity which gives equal
values for α-equivalent expressions (i.e. renaming an identifier shouldn’t affect
the feature). To do this, the toTree function maintains a context as it recurses
through expressions (we elided this from Figure 5 for clarity). The context is
a list of the local identifiers which are in scope, prepended as they are encoun-
tered. The context is initially empty, and only extended when toTree calls itself
recursively.

For example, when calculating toTree(Lam i e) in context x, we make the
recursive call toTree(e) in the context of x prepended with i (i.e. (i)++x).
Similar extensions of the context are performed in the cases of Bind, Case6, Alt
(which may introduce an arbitrary number of local identifiers) and Let (where
identifiers are taken from occurrences of Bind in the first expression).

Well-formed Haskell declarations do not contain free variables (or, equiva-
lently, free variables are encoded as global identifiers rather than local identi-
fiers). Hence if we apply toTree to (the Core expression corresponding to) such

5In [27], “similar” Gallina tokens like fix and cofix are grouped together to reduce re-
dundancy; we do not group tokens, but we do put “similar” tokens close together, such as
Local and Global.

6The L value in a Case expression is bound to the expression being matched against; a
technical detail to preserve sharing.
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declarations we are guaranteed that l ∈ L will appear in the context whenever
we encounter φ(l). In which case we define:

φ(l) = i+ 2α if l ∈ L (5)

Where i is the index of the first occurrence of l in the context. This tells
us how many binders a variable is nested inside, relative to the point it was
introduced. This is invariant under renaming, as we wanted, and is known as
the de Bruijn index of l. We again use α to separate these features from those
of other constructs.

Since the toTree function discards numerals, strings and constructor iden-
tifiers, the only remaining case is global identifiers G. Since these are declared
outside the body of an expression, we cannot perform the same indexing trick
as we did for local identifiers. We also cannot directly encode the form of the
identifiers, e.g. using a scheme like Gödel numbering, since this is essentially
arbitrary and has no effect on their semantic meaning (referencing other expres-
sions).

Instead, we use the approach taken in the latest versions of ML4PG and
encode global identifiers indirectly, by looking up the expressions which they
reference:

φ(g ∈ G) =

{
i+ 3α if g ∈ Ci

frecursion otherwise
(6)

Where C are our clusters (in some arbitrary order). This is where the
recurrent nature of the algorithm appears: to determine C we must perform
k-means clustering during feature extraction; yet that clustering step, in turn,
requires that we perform feature extraction.

For this recursive process to be well-founded, we perform a topological sort
on declarations based on their dependencies (the expressions they reference). In
this way, we can avoid looking up expressions which haven’t been clustered yet.
To perform our sort, we construct a directed graph, where each declaration is a
node and edges denote an “is referenced by” relation. An example dependency
graph is given in Figure 7.

In a topological sort we say that A < B for nodes A and B if we can reach B
by following edges from A (if A and B cannot be reached from each other, their
order is arbitrary). This is slightly complicated in Haskell (compared to Coq, for
example), since general recursion is permitted and hence the dependency graph
may contain cycles. To handle this, we use an algorithm such as Tarjan’s [78]
to produce a sorted list of strongly connected components (SCCs), where each
SCC is a mutually-recursive sub-set of the declarations (as shown in Figure 7b).
If an identifier cannot be found in any cluster, it must appear in the same SCC
as the expression we are processing; hence we use the constant feature value
frecursion.

By working through the sorted list of SCCs, storing the features of each top-
level expression as they are calculated, our algorithm can be computed iteratively
rather than recursively, as shown in Algorithm 1.
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Z

S

plus Falsemult oddevenTrue

(a) Dependency graph for Figure 3. Loops indicate recursive functions, double arrows
indicate mutual recursion. Dashed lines show references to data constructors, which
we do not consider in this work.

plus
odd

even
mult

(b) One possible topological sorting of simply connected components for Figure 7a
(ignoring constructors). even and odd are mutually recursive, neither can appear
before the other, so they are grouped into one component and handled concurrently
by Algorithm 1.

Figure 7: Sorting functions from Figure 3 into dependency order.

Algorithm 1 Recurrent clustering of Core expressions.
Require: List d contains SCCs of (identifier, expression) pairs, in dependency

order.
1: procedure RecurrentCluster
2: C← []
3: DB ← ∅
4: for all scc in d do
5: DB ← DB ∪ {(i, featureV ec(e)) | (i, e) ∈ scc}
6: C← kMeans(DB)

return C
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As an example of this recurrent process, we can consider the Peano arith-
metic functions from Figure 3. A valid topological ordering is given in Figure
7b, which can be our value for d (eliding Core expressions to save space):

d = [{(plus, . . . )}, {(odd, . . . ), (even, . . . )}, {(mult, . . . )}]

We can then trace the execution of Algorithm 1 as follows:

• The first iteration through RecurrentCluster’s loop will set scc ←
{(plus, . . . )}.

• With i = plus and e as its Core expression, calculating featureV ec(e)
is straightforward; the recursive call φ(plus) will become frecursion (since
plus doesn’t appear in C).

• The call to kMeans will produce C ← [{plus}], i.e. a single cluster
containing plus.

• The next iteration will set scc← {(odd, . . . ), (even, . . . )}.

• With i = odd and e as its Core expression, the call to even will result in
frecursion.

• Likewise for the call to even when i = odd.

• Since the feature vectors for odd and even will be identical, kMeans will
put them in the same cluster. To avoid the degenerate case of a single
cluster, for this example we will assume that k = 2; in which case the other
cluster must contain plus. Their order is arbitrary, so one possibility is
C = [{odd, even}, {plus}].

• Finally mult will be clustered. The recursive call will become frecursion
whilst the call to plus will become 2 + 3α, since plus ∈ C2.

• Again assuming that k = 2, the resulting clusters will be
C← [{odd, even}, {plus, mult}].

Even in this very simple example we can see a few features of our algorithm
emerge. For example, odd and even will always appear in the same cluster, since
they only differ in their choice of constructor names (which are discarded by
toTree) and recursive calls (which are replaced by frecursion). A more extensive
investigation of these features requires a concrete implementation, in particular
to pin down values for the parameters such as r, c, frecursion, α and so on.

3.1.3 Comparison

Our algorithm is most similar to that of ML4PG, as our transformation maps
the elements of a syntax tree to distinct cells in a matrix. In contrast, the
matrices produced by ACL2(ml) summarise the tree elements: providing, for
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each level of the tree, the number of variables, nullary symbols, unary symbols,
etc.

There are two major differences between our algorithm and that of ML4PG:
mutual-recursion and types.

The special handling required for mutual recursion is discussed above (namely,
topological sorting of expressions and the frecursion feature). Such handling is
not present in ML4PG, since the Coq code it analyses must, by virtue of the
language, be written in dependency order to begin with. Coq does have limited
support for mutually-recursive functions, of the following form:

Fixpoint even n := match n with
| O => true
| S m => odd m

end
with odd n := match n with

| O => false
| S m => even m

end.

However, this is relatively uncommon and unsupported by ML4PG.
The more interesting differences come from our handling (or lack thereof)

for types. Coq and ACL2 are at opposite ends of the typing spectrum, with the
former treating types as first class entities of the language whilst the latter is
untyped (or unityped). In both cases, we have a single language to analyse, by
ML4PG and ACL2(ml) respectively.7

The situation is different for Haskell, where the type level is distinct from the
value level, and there are strict rules for how they can influence each other. In
particular, Haskell values can depend on types (via the type class mechanism)
but types cannot depend on values.

In our initial approach, we restrict ourselves to the value level. This has
several consequences:

• Although they are values, we cannot distinguish between data construc-
tors, other than using exact equality. Hence they are discarded by toTree.

• Since Core uses a single Lam abstraction for both value- and type-level
parameters, we cannot always distinguish between them. This can cause
a function’s Core arity to be greater than its Haskell arity.

There is certainly promise in including types in our analysis, by pairing ev-
ery term with its type as in ML4PG. This will allow fine-grained distinction
of expressions which are otherwise identical, especially data constructors. Inte-
grating types into our algorithm, and extracting them from Core expressions, is
hence left as future work.

7ML4PG can also analyse Coq’s Ltac meta-language. Haskell has its own meta-language,
Template Haskell, but here we only consider the regular Haskell which it generates.
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Figure 8: Components of the ML4HS theory exploration system. Custom com-
ponents are shaded, arrows indicate data flow.

4 Implementation

We provide an implementation of our recurrent clustering algorithm in a tool
called ML4HS, which consists of a loose collection of components shown in
Figure 8. This arrangement makes it easy to swap out parts for experimentation.
In the following, we describe the custom components in the order they appear
in the diagram.

4.1 AST Plugin
The GHC compiler provides mechanisms for parsing Haskell source code and
converting it to Core. It also includes a renaming transformation, which resolves
global identifiers into a canonical form. This allows us to spot repeated use of
a term, across multiple modules and packages, with a simple syntactic equality
check.

Since we are interested in comparing definitions based on the terms they
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reference, building our framework on top of GHC seems like a promising ap-
proach. Indeed, HipSpec already invokes GHC’s API to obtain the definitions
of Haskell functions, in order to transform them into a form suitable for ATP
systems. However, our initial experiments showed that this technique is too
fragile for use on many real Haskell projects.

This is due to many projects having a complex module structure, requiring
particular GHC flags to be given, or using pre-processors such as cpp and Tem-
plate Haskell to generate parts of their code. All of this complexity means that
invoking GHC “manually” via its API is unlikely to obtain the definitions we
require.

Thankfully there is one implementation detail which most Haskell packages
agree on: the Cabal build system. All of the above complexities will be specified
in a package’s “Cabal file”, such that the cabal configure and cabal build
commands are very likely to work for most packages, without any extra effort.
This shifted our focus to augmenting GHC and Cabal, such that definitions can
be collected during the normal Haskell build process.

GHC provides a plugin mechanism for manipulating Core during a build,
intended for optimisation passes, which we use to inspect definitions as they are
being compiled. We provide a plugin called AstPlugin which emits a serialised
version of each Core definition to the console (to satisfy the type system, it also
implements a dummy “optimisation” which returns the Core unchanged).

Compared to Haskell, Core is a much simpler language and its representation
is relatively stable compared to many existing representations of Haskell (which
often change to support various language extensions). Three areas which make
Core difficult to handle are:

Type variables: Parametric polymorphism (described in more detail in §5.1)
can be thought of as values being parameterised by type-level objects. In
System F, this is represented explicitly by a special abstraction form Λ,
distinct from the λ used for values. Core only has one abstraction form,
Lam, for both types and values. This alters function properties like arity.

Unified namespace: Haskell has distinct namespaces for values, types, data con-
structors, etc. Since Core does not make these distinctions, names may be-
come ambiguous. For example, a type parameter t may be confused with
a function argument t. To prevent this, overlapping namespaces are dis-
tinguished by prefices which are distinct from the available names; for ex-
ample a type class constraint Ord t may give rise to a binder Lam "$dOrd"
in Core, which is guaranteed not to conflict since this name would be in-
valid in Haskell. This causes difficulties when looking up names, as these
prefixed forms do not easily map back to the Haskell source.

Violating encapsulation: Although Haskell allows names to be private to a
module, when compiling Core we have full access to private definitions, as
well as references to private names from within other definitions. Hence
the definitions we receive from AstPlugin will include private values
which we cannot import into a theory exploration tool.
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In practice, we work around these issues with a post-processing stage: for
each named definition appearing in the output of AstPlugin, we attempt
to reference that name within the GHCi interpreter. Names with the above
problems will cause an error, and are discarded.

The result of building a Haskell package with AstPlugin enabled is a
database of Haskell definitions, similar in some respects to Hoogle [56]. Def-
initions are indexed by a combination of their package name, module name
and binding name. The definitions themselves are s-expressions representing
the Core AST, with non-local references replaced by a combination of package
name, module name and binding name, which makes it trivial to look up ref-
erences in the database. Each definition also has an associated arity and type,
obtained during the post-processing step mentioned above.

4.2 Toplogical Sorting
As described in §3.1.2, we must topologically sort the output of AstPlugin
in order for our recurrent clustering to be well-founded. Since our database
keys (containing the package, module and binding names, as described above)
match our representation of non-local references, it is simple to walk each syntax
tree to obtain the set of references it makes. In addition, the resulting set of
(identifier, list-of-referenced-identifiers) pairs exactly matches the (vertex, list-
of-successor-vertices) format used to represent directed graphs by the popular
containers library which ships with GHC. This provides an implementation
of topological sort for strongly connected components, which we use as-is. A
simple shell script loops through these SCCs, invoking the recurrent clustering
component for each and appending the resulting features and clusters to the
database.

4.3 Feature Extraction
The implementation of our feature extraction algorithm is a rather direct trans-
lation of the description given in §3 into Haskell. We parse the s-expressions
generated by AstPlugin into algebraic data types which correspond directly
to the definitions in Figure 1; this is routine, so we omit the details for brevity.
Similarly, we can represent rose trees with a datatype corresponding to the
definition given in §3.1.1:

data RoseTree = Node Feature [RoseTree]

For simplicity we use the representation Feature = Int, as we do not have
fractional values. Since we represent the symbols expr, id, etc. from Figure
1 using different datatypes, we cannot write one big definition of toTree or φ
which works on all tokens. Each case shown in Figure 5 and equations 4, 5
and 6 appears in the implementation, although they are spread across several
functions.

To support looking up local identifiers, our implementation of toTree takes a
context as argument, extending it as required. As an example of the complexity
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this adds, here is the Case branch of toTree:

toTree :: Context -> Expr -> RoseTree
toTree ctx x = case x of

...
Case e l as -> Node fCase (toTree ctx e : map (toTreeAlt (l:ctx)) as)
...

Breaking this down we can see fCase representing the value of φ(Case), and
a list of sub-trees defined in parentheses. The first subtree is a straightforward
recursive call in an unmodified context: toTree ctx e. The rest of the list is
formed by applying the function toTreeAlt (l:ctx) to each element of the list
as of Alt clauses.

The toTreeAlt function contains those cases of toTree which handle symbols
in alt. We prepend the identifier l to the context, to get the extended context
l:ctx. This is because l will be bound the value of e, in order to avoid re-
computing its value several times.

The other clauses are handled in a similar way. The trickiest is the Let
clause, since the local identifiers aren’t directly available; we must extract them
from their Rec, NonRec and Bind wrappers first, which we do using helper
functions.

As shown above, the values from equations 4 are encoded directly in toTree.
For phi(l ∈ L) we use standard Haskell functions to look up the required indices
in the context:

phiL :: Context -> Local -> Feature
phiL ctx x = case elemIndex x ctx of

Nothing -> error (concat ["Local ’", show x,
"’ not in context ’",
show ctx, "’"])

Just i -> (2 * alpha) + i

As explained in §3.1.2, local identifiers should always exist in the context. If
this precondition doesn’t hold, we abort the program with an error rather than
continuing.

Global identifiers are kept as-is until we have access to the clusters from the
last iteration. This takes place outside Haskell, using the jq data processing
tool.

Our implementation of level exactly matches equation 2:

level :: Int -> RoseTree -> [[Feature]]
level 1 (Node f _) = [f]
level n (Node _ ts) = concatMap (level (n-1)) ts

To produce feature vectors, we do not directly construct the matrix; instead
we generate the rows and concatenate them together in one step, using the
concatMap function:

featureVec :: Expr -> [Feature]
featureVec e = concatMap (\m -> pad (level m tree)) [1..r]

where tree = toTree [] e
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pad xs = take c (xs ++ repeat 0)

By providing featureVec with the latest set of clusters, read from the Ast-
Plugin database, we turn Core expressions into feature vectors, which are
appended to the database.

We use the Weka system to perform our k-means clustering, as it is widely
used, including by ML4PG. We select all feature vectors from our database,
and write them in CSV format for Weka to process. The Weka CLI command
is invoked, which appends a cluster number to each of these feature vectors; we
read these off and append them to the database. As long as more SCCs remain
unprocessed, we keep looping this process, using the database to communicate
between the feature extraction and clustering phases.

4.4 MLSpec
We cannot supply these clusters as-is to QuickSpec, since it must be provided
with a signature. These are constructed by our MLSpec tool, using information
from the AstPlugin database. Tasks performed by MLSpec include:

• Monomorphising: Given values of polymorphic type, e.g. safeHead ::
forall t. [t] -> Maybe t and [] :: forall t. [t], a testing-
based system like QuickSpec is unable to evaluate these expressions
without instantiating the variable t to a specific type. Such an instan-
tiation is called monomorphising, and in the case of MLSpec we build
on previous work in QuickCheck by attempting to instantiate all type
variables to Integer. We discard those cases where this is invalid, such
as variable type constructors (e.g. forall c. c Bool -> c Bool) or
incompatible class constraints (e.g. forall t. IsString t => t).

• Qualification: All names are qualified (prefixed by their module’s name),
to avoid most ambiguity. There is still the possibility that multiple pack-
ages will declare modules of the same name, although this is rare as it
causes problems for any Haskell programmer trying to use those modules.
In such cases the exploration process simply aborts.

• Variable definition: Once a QuickSpec theory has been defined contain-
ing all of the given terms, we inspect the types it references and append
three variables for each to the theory (enough to discover laws such as
associativity, but not too many to overflow the limit of QuickSpec’s ex-
haustive search).

• Sandboxing: One difficulty with Haskell’s packaging infrastructure is that
all required packages and modules must be provided up-front, usually by
specification in a Cabal file. Since MLSpec builds signatures dynami-
cally, depending on the cluster information it is given, we do not know
what packages it may need. To work around this problem, MLSpec in-
vokes QuickSpec for each cluster using a library we have built called
nix-eval. This provides an eval function, like those commonly found in
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dynamic languages such as Python and Javascript, for evaluating Haskell
expressions. The key feature of nix-eval is that these Haskell expres-
sions may reference packages that are not installed on the system. When
such expressions are evaluated, these packages will be automatically down-
loaded and installed into a sandbox using the Nix package manager, and
GHC will be invoked in this sandbox to perform the evaluation.

5 Related Work

5.1 Haskell
Whilst §2.1 gave some brief background on Haskell, little explanation was given
for why we chose this language rather than, for example Coq or ACL2 (for which
recurrent clustering algorithms already exist), or a more widely used language
like Java. Here we discuss the relevant language features from a high-level,
which motivated our choice:

Functional: All control flow in Haskell is performed by function abstraction and
application, which we can reason about using standard rules of inference
such as modus ponens.

Pure: Execution of actions (e.g. reading files) is separate to evaluation of
expressions; hence our reasoning can safely ignore complicated external
and non-local interactions.

Statically Typed: Expression are constrained by types, which can be used
to eliminate unwanted combinations of values, and hence reduce search
spaces; static types can be deduced syntactically, without having to exe-
cute the code.

Non-strict: If an evaluation strategy exists for β-normalising an expression
(i.e. performing function calls) without diverging, then a non-strict eval-
uation strategy will not diverge when evaluating that expression. This
is rather technical, but in simple terms it allows us to reason effectively
about a Turing-complete language, where evaluation may not terminate.
For example, when reasoning about pairs of values (x, y) and projection
functions fst and snd, we might want to use an “obvious” rule such as
∀x y, x = fst (x, y). Haskell’s non-strict semantics makes this equa-
tion valid; whilst it would not be valid in the strict setting common to
most other languages, where the expression fst (x, y) will diverge if y
diverges (and hence alter the semantics, if x doesn’t diverge).

Algebraic Data Types: These provide a rich grammar for building up user-
defined data representations, and an inverse mechanism to inspect these
data by pattern-matching. For our purposes, the useful consequences of
ADTs and pattern-matching include their amenability for inductive proofs
and the fact they are closed ; i.e. an ADT’s declaration specifies all of the



5 RELATED WORK 27

normal forms for that type. This makes exhaustive case analysis trivial,
which would be impossible for open types (for example, consider classes
in an object oriented language, where new subclasses can be introduced
at any time).

Parametricity: This allows Haskell values to be parameterised over type-level
objects; provided those objects are never inspected. This has the practical
benefit of enabling polymorphism: for example, we can write a polymor-
phic identity function id :: forall t. t -> t. 8 Conceptually, this
function takes two parameters: a type t and a value of type t; yet only the
latter is available in the function body, e.g. id x = x. This inability to
inspect type-level arguments gives us the theoretical benefit of being able
to characterise the behaviour of polymorphic functions from their type
alone, a technique known as theorems for free [79].

Type classes: Along with their various extensions, type classes are interfaces
which specify a set of operations over a type (or other type-level object,
such as a type constructor). Many type classes also specify a set of laws
which their operations should obey but, lacking a simple mechanism to
enforce this, laws are usually considered as documentation. As a simple
example, we can define a type class Semigroup with the following opera-
tion and associativity law:

op :: forall t. Semigroup t => t -> t -> t

∀x y z, op x (op y z) = op (op x y) z

The notation Semigroup t => is a type class constraint, which restricts
the possible types t to only those which implement Semigroup. 9 There
are many instances of Semigroup (types which may be substituted for
t), e.g. Integer with op performing addition. Many more examples can
be found in the typeclassopedia [83]. This ability to constrain types, and
the existence of laws, helps us reason about code generically, rather than
repeating the same arguments for each particular pair of t and op.

Equational: Haskell uses equations at the value level, for definitions; at the
type level, for coercions; at the documentation level, for typeclass laws;
and at the compiler level, for ad-hoc rewrite rules. This provides us with
many sources of equations, as well as many possible uses for any equations
we might discover. Along with their support in existing tools such as

8Read “a :: b” as “a has type b” and “a -> b” as “the type of functions from a to b”.
9Alternatively, we can consider Semigroup t as the type of “implementations of Semigroup

for t”, in which case => has a similar role to -> and we can consider op to take four parameters:
a type t, an implementation of Semigroup t and two values of type t. As with parameteric
polymorphism, this extra Semigroup t parameter is not available at the value level. Even if
it were, we could not alter our behaviour by inspecting it, since Haskell only allows types to
implement each type class in at most one way, so there would be no information to branch
on.
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SMT solvers, this makes equational conjectures a natural target for theory
exploration.

Modularity: Haskell has a module system, where each module may specify an
export list containing the names which should be made available for other
modules to import. When such a list is given, any expressions not on the
list are considered private to that module, and are hence inaccessible from
elsewhere. This mechanism allows modules to provide more guarantees
than are available just in their types. For example, a module may represent
email addresses in the following way:

module Email (Email(), at, render) where

data Email = E String String

render :: Email -> String
render (E u h) = u ++ "@" ++ h

at :: String -> String -> Maybe Email
at "" h = Nothing
at u "" = Nothing
at u h = Just (E u h)

The Email type guarantees that its elements have both a user part and
a host part (modulo divergence), but it does not provide any guarantees
about those parts. We also define the at function, a so-called “smart
constructor”, which has the additional guarantee that the Emails it returns
contain non-empty Strings. By ommitting the E constructor from the
export list on the first line 10, the only way other modules can create
an Email is by using at, which forces the non-empty guarantee to hold
globally.

Together, these features make Haskell code highly structured, amenable to
logical analysis and subject to many algebraic laws. However, as mentioned
with regards to type classes, Haskell itself is incapable of expressing or enforc-
ing these laws (at least, without difficulty [47]). This reduces the incentive to
manually discover, state and prove theorems about Haskell code, e.g. in the
style of interactive theorem proving, as these results may be invalidated by
seemingly innocuous code changes. This puts Haskell in a rather special posi-
tion with regards to the discovery of interesting theorems; namely that many
discoveries may be available with very little work, simply because the code’s
authors are focused on software development rather than proof development.
The same cannot be said, for example, of ITP systems; although our reasoning
capabilities may be stronger in an ITP setting, much of the “low hanging fruit”
will have already been found through the user’s dedicated efforts, and hence
theory exploration would be unlikely to discover unexpected properties.

10The syntax Email()means we’re exporting the Email type, but not any of its constructors.
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Other empirical advantages to studying Haskell, compared to other program-
ming languages or theorem proving systems, include:

• The large amount of Haskell code which is freely available online, e.g. in
repositories like Hackage, with which we can experiment.

• The existence of theory exploration systems such as HipSpec, and related
tools which we may be able to re-use, including conjecture generators like
QuickSpec; counterexample finders like QuickCheck, SmallCheck
and SmartCheck; theorem provers like Hip [68]; and other related testing
and term-generating systems like MuCheck [43], MagicHaskeller [38]
and Djinn [3].

• The remarkable amount of infrastructure which exists for working with
Haskell code, including package managers, compilers, interpreters, parsers,
static analysers, etc.

5.2 Theory Exploration
We briefly described theory exploration in §2.3, as the task of discovering new
theorems in a software or proof library, rather than proving/disproving user-
provided statements. The idea was first introduced in the Theorema [13] sys-
tem of Buchberger. This provided an interactive environment, similar to com-
puter algebra systems and interactive theorem provers. In this setting, many of
our concerns such as the generation of values and deciding which properties to
explore are simply delegated to the user; the software would check for correct-
ness, store results and perform searches; again, similar to interactive theorem
provers.

Subsequent systems have investigated automated theory exploration, for
tasks such as lemma discovery. By removing user interaction, these concerns
about directing search must be solved by algorithms. As well as QuickSpec
and HipSpec in Haskell, automated theory exploration has been applied to
Isabelle [57, 35, 36].

We have focused our attention on QuickSpec, although it does not actu-
ally prove its results, and hence may not be considered a theory exploration
system on its own. However, it does form a vital component of HipSpec, which
uses off-the-shelf automated theorem provers (ATPs) to verify QuickSpec’s
conjectures, forming a complete theory exploration system as well as a capable
inductive theorem prover (by exploiting theory exploration for lemma genera-
tion) [14]. Due to HipSpec’s use in Hipster, improvements to QuickSpec
also benefit work being pursued in Isabelle.

5.3 Relevance Filtering
The combinatorial nature of formal systems causes many proof search methods,
such as resolution, to have exponential complexity [26]; hence even a modest
size increase can turn a trivial problem into an intractable one. Finding efficient

http://hackage.haskell.org
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alternatives for such algorithms, especially those which are NP-complete (e.g.
determining satisfiability) or co-NP-complete (e.g. determining tautologies),
seems unlikely, as it would imply progress on the famously intractable open
problems of P = NP and NP = co-NP. On the other hand, we can turn this
difficulty around: a modest decrease in size may turn an intractable problem
into a solvable one. We can ensure that the solutions to these reduced problems
coincide with the original if we only remove redundant information. This leads
to the idea of relevance filtering (or, premise selection, when viewed as the
addition of relevant information to an initially-empty problem). This is the
core idea behind our restriction of theory exploration to intelligently-selected
clusters of symbols, rather than whole libraries at a time.

Relevance filtering has mostly been used in automated proof search, where
it simplifies problems by removing from consideration those clauses (axioms,
definitions, lemmas, etc.) which are deemed irrelevant. The technique is used
in Isabelle’s Sledgehammer tool, during its translation of Isabelle/HOL theories
to statements in first order logic: rather than translating the entire theory, only
a sub-set of relevant clauses are included. This reduces the size of the problem
and speeds up the proof search, but it creates the new problem of determining
when a clause is relevant: how do we know what will be required, before we
have the proof?

The initial approach taken by Sledgehammer, known as MePo (from Meng-
Paulson [55]), gives each clause a score based on the proportion m

n of its symbols
which are “relevant” (where n is the number of symbols in the clause and m is
the number which are relevant). Initially, the relevant symbols are those which
occur in the goal to be proved, but whenever a clause is found which scores
more than a particular threshold, all of its symbols are then also considered
relevant. There are other heuristics applied too, such as increasing the score
of user-provided facts (e.g. given by keywords like using), locally-scoped facts,
first-order facts and rarely-occuring facts. To choose r relevant clauses for an
ATP invocation, we simply order the clauses by decreasing score and take the
first r of them.

Recently, a variety of alternative algorithms have also been investigated,
for example the MaSH algorithm (Machine Learning for SledgeHammer) [40]
uses the “visibility” of one theorem from another to determine the relevance of
clauses. Visibility is essentially a dependency graph of which theorems were
used in the proofs of which other theorems (although the theorems are actually
represented as abstract sets of features). To select relevant clauses for a goal,
the set of clauses which are visible from the goal’s components is generated; this
is further reduced by (an efficient approximation of) a naïve Bayes algorithm.

Another example is multi-output ranking (MOR), which uses a support vec-
tor machine (SVM) approach for selecting relevant axioms from the Mizar Math-
ematical Library for use by the Vampire ATP system [1]. Many more approaches
are described and evaluated in [41], some of which may be directly applicable
in the context of theory exploration.
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5.4 Recurrent Clustering
Our recurrent clustering approach takes inspiration from the ML4PG [39] and
ACL2(ml) [28] tools, used for analysing proofs in Coq and ACL2, respectively.
Whilst both transform syntax trees into matrices, the algorithm of ML4PG
most closely resembles ours as it assigns tokens directly to matrix elements. In
contrast, the matrices produced by ACL2(ml) summarise information about the
tree; for example, one column counts the number of variables appearing at each
tree level, others count the number of function symbols which are nullary, unary,
binary, etc. Whilst it may be interesting to contrast our current algorithm with
an alternative based on that of ACL2(ml), it is unclear how such summaries
could be extended to include types, which seems the next logical step for our
approach. The ML4PG algorithm extends trivially, by using (term, type) pairs
instead of just terms.

The way we use our clusters to inform theory exploration is actually more
similar to that of ACL2(ml) than ML4PG. ML4PG can either present clusters to
the user for inspection, or produce automata for recreating proofs. In ACL2(ml),
the clusters are used to restrict the search space of a proof search, much like we
restrict the scope of theory exploration.

ACL2(ml) reasons by analogy: finding theorem statements which are similar
to the current goal, and attempting to prove the goal in a similar way. In
particular, the lemmas used to prove a theorem are mutated by substituting
symbols for those which appear in the same cluster. For example, if plus and
multiply are clustered together, and we are trying to prove a goal involving
multiply, then ACL2(ml) might consider an existing theorem involving plus.
The lemmas used to prove that theorem will be mutated, for example replacing
occurrences of plus with mult, in an attempt to prove the goal.

Whilst we do not currently reason by analogy, this is an interesting area
for future work in theory exploration: given a set of theorems relating partic-
ular terms, we might form conjectures regarding similar terms found through
clustering.

5.5 Feature Extraction
One major difficulty when applying statistical machine learning algorithms to
languages, such as Haskell, is the appearance of recursive structures. This can
lead to nested expressions of arbitrary depth, which are difficult to compare in
numerical ways. One solution, as described in §2.4.1, is to use feature extraction;
however, our method is not the only possible way to encode recursive structures
as fixed-size features.

The simplest way to encode such inputs is to simply choose a desired size,
then pad anything smaller and truncate anything larger. We use this to make
our matrices a uniform size, borrowing the idea from ML4PG. Care must be
taken to ensure that we are not discarding too much information, that we are
not producing features with too many dimensions to be practical, and that there
is a uniform “meaning” to each feature across different feature vectors. In our
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case, we avoid many of these problems by transforming the recursive structure
of expressions into matrices first; this gives each feature a stable meaning such
as “the ith token from the left at the jth level of nesting”.

Truncation works best when the input data is arranged with the most sig-
nificant data first (in a sense, it is “big-endian”). This is the case for Haskell
expressions, since the higher levels of the syntax tree are the most semantically
significant; for example, the lower levels may never even be evaluated due to
laziness. This allows us to truncate more aggressively than if the leaves were
most significant.

By modelling our inputs as points in high-dimensional spaces, we can con-
sider feature extraction as projection into a lower-dimensional space (known as
dimension reduction). Truncation is a trivial dimension reduction technique;
more sophisticated projection functions consider the distribution of the input
points, and project with the hyperplane which preserves as much of the vari-
ance as possible (or, equivalently, reduces the mutual information between the
points).

Techniques such as principle component analysis (PCA) can be used to find
these hyperplanes, but unfortunately require their inputs to already have a fixed,
integer number of dimensions. In the case of our recursive expressions (which we
may consider to have fractal dimension), we would need another pre-processing
stage to satisfy this requirement.

There are machine learning algorithms which can handle variable-size input,
but these are often supervised algorithms which require an externally-provided
error function to minimise. Error functions can be given for clustering, for
example k-means implicitly minimises the function given in equation 1, but
unsupervised algorithms may be preferred for efficiency as they are more direct.

One example of learning from variable-size input is to use recurrent neural
networks (RNNs). These contain cyclic connections between neurons, unlike
the traditional acyclic “feed-forward” NNs, allowing state to persist between
observations. In this way, each data point can be divided into a sequence of
arbitrary length, for example an s-expression, and fed into an RNN one token
at a time for processing.

Unfortunately RNNs are difficult to train. The standard way to train NNs
is the back-propagation algorithm; when this is extended to handle cycles we
get the backpropagation through time algorithm [80]. However, this suffers a
problem known as the vanishing (or exploding) gradient : error values change
exponentially as they propagate back through the cycles, which prevents effec-
tive learning of correlations across a sequence, undermining the main advantage
of RNNs. The vanishing gradient problem is the subject of current research,
with countermeasures including neuroevolution (using evolutionary computation
techniques rather than back-propagation) and long short-term memory (LSTM;
introducing special nodes to “store” state, rather than having them loop around
a cycle [30]).

Using sequences to represent recursive structures is also problematic: if we
want our learning algorithm to exploit structure (such as the depth of a to-
ken), it will have to discover how to parse the sequences for itself, which seems
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wasteful. The back-propagation through structure approach [25] is a more direct
solution to this problem, using a feed-forward NN to learn recursive distributed
representations [64] which correspond to the recursive structure of the inputs.
Such distributed representations can also be used for sequences, which we can
use to encode sub-trees when the branching factor of nodes is not uniform [42].
More recent work has investigated storing recursive structures inside LSTM cells
[85].

A simpler alternative for generating recursive distributed representations is
to use circular convolution [63]. Although promising results are shown for its
use in distributed tree kernels [84], our preliminary experiments in applying
circular convolution to functional programming expressions found most of the
information to be lost in the process; presumably as the expressions are too
small.

Kernel methods have also been applied to structured information, for exam-
ple in [23] the input data (including sequences, trees and graphs) are represented
using generative models, such as hidden Markov models, of a fixed size suitable
for learning. Many more applications of kernel methods to structured domains
are given in [6], which could be used to learn more subtle relations between
expressions than recurrent clustering alone.

5.6 K-Means
We use the Weka tool to perform k-means clustering [31], since we are more
concerned with the application of feature extraction to Haskell and its use in
theory exploration, rather than precise tuning of learning algorithms. Since k-
means is a standard method, there are many other implementations available.
More interestingly, there are many other clustering algorithms we could use, such
as expectation maximisation 11, but experiments with ML4PG have shown little
difference in their results; in effect, the quality of our features is the bottleneck
to learning, so there is no reason to avoid a fast algorithm like k-means.

In any case there are many conservative improvements to the standard k-
means algorithm, which could be applied to our setup. For example, a more
efficient approach like yinyang k-means [20] could make larger input sizes more
practical to cluster, especially since recurrent clustering invokes k-means many
times. The k-means++ approach [2, 5] can be used to more carefully select
the “seed” values for the first timestep, and the x-means algorithm [61] is able
to estimate how many clusters to use (our final clusters should be tuned to
maximise the performance of the subsequent theory exploration step, but x-
means could still be useful in the recurrent clustering steps).

11In fact, k-means is very similar to expectation-maximisation, as it alternates between an
expectation step (finding the mean value of each cluster) and a maximisation step (assigning
points to the cluster they’re most similar to; or alternatively, minimising the distance of each
point to the centre of its cluster, as per equation 1).
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6 Evaluation

We have applied our recurrent clustering algorithm to several scenarios, with
mixed results. A major difficulty in evaluating these clusters is that we have no
“ground truth”, i.e. there is no objectively correct way to compare expressions.
Instead, we provide a qualitative overview of the more interesting characteristics.

As a simple example, we clustered (Haskell equivalents of) the running ex-
amples used to present ACL2(ml) [28], shown in Figure 9. These include tail-
recursive and non-tail-recursive implementations of several functions. We expect
those with similar structure to be clustered together, rather than those which
implement the same function. The results are shown in Figure 11, where we can
see the “Tail” functions clearly distinguished, with little distinction between the
tail recursive and naïve implementations.

Next we tested whether these same functions would be clustered together
when mixed with seemingly-unrelated functions, in this case 207 functions from
Haskell’s text library. In fact, the helperFib and fibTail functions appeared
together in a separate cluster from the rest. This was unexpected, with no
obvious semantic connection between these two functions and the others in their
cluster (although most are recursive, due to the nature of the text library).

We have also applied our recurrent clustering algorithm to a variety of the
most-downloaded packages from Hackage (as of 2015-10-30), including text
(as above), pandoc, attoparsec, scientific, yesod-core and blaze-html.
Whilst we expected functions with a similar purpose to appear together, such
as the various reader and writer functions of pandoc, there were always a few
exceptions which became separate for reasons which are still unclear.

When clustering the yesodWeb framework, the clustering did seem to match
our intuitions, in particular since all 15 of Yesod’s MIME type identifiers ap-
peared in the same cluster.

Whilst recurrent clustering has produced results which merit further inves-
tigation, the application to theory exploration has yet to be tested empirically.
This is due to QuickSpec’s use of QuickCheck’s Arbitrary type class to gen-
erate random values for instantiating variables. Whilst we can automatically
define QuickSpec theories and invoke them with nix-eval, not all types have
Arbitrary instances; those without cannot be given any variables in our signa-
ture, which severely limits the possible combinations which can be explored. In
many cases, no variables can be included at all, leaving just equations involv-
ing constants. This has so far prevented us from measuring the direct impact
on QuickSpec performance, either directly by exploring the sub-sets identified
through recurrent clustering, or indirectly by comparing the equations generated
by a full brute-force search to our recurrent clusters: those equations relating
terms from different clusters would not be discovered by our method. It is this
ratio of equations found through brute force to those found after narrowing-
down by clusters which is one of our key objectives to maximise at this stage;
until we begin to pursue the interestingness of the properties.

The following less-serious problems were also encountered while applying
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(defun fact (n)
(if (zp n) 1 (* n (fact (- n 1)))))

(defun helper-fact (n a)
(if (zp n) a (helper-fact (- n 1) (* a n))))

(defun fact-tail (n)
(helper-fact n 1))

(defun power (n)
(if (zp n) 1 (* 2 (power (- n 1)))))

(defun helper-power (n a)
(if (zp n) a (helper-power (- n 1) (+ a a))))

(defun power-tail (n)
(helper-power n 1))

(defun fib (n)
(if (zp n)

0
(if (equal n 1)

1
(+ (fib (- n 1)) (fib (- n 2))))))

(defun helper-fib (n j k)
(if (zp n)

j
(if (equal n 1)

k
(helper-fib (- n 1) k (+ j k)))))

(defun fib-tail (n)
(helper-fib n 0 1))

Figure 9: Common Lisp functions, both tail-recursive and non-tail-recursive.
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fact n = if n == 0
then 1
else n * fact (n - 1)

helperFact n a = if n == 0
then a
else helperFact (n - 1) (a * n)

factTail n = helperFact n 1

power n = if n == 0
then 1
else 2 * power (n - 1)

helperPower n a = if n == 0
then a
else helperPower (n - 1) (a + a)

powerTail n = helperPower n 1

fib n = if n == 0
then 0
else if n == 1

then 1
else fib (n - 1) + fib (n - 2)

helperFib n j k = if n == 0
then j
else if n == 1

then k
else helperFib (n - 1) k (j + k)

fibTail n = helperFib n 0 1

Figure 10: Haskell equivalents of the Common Lisp functions in Figure 9.

factTail

fibTail

powerTail

fact

helperFact

fib

helperFib

helperPower

power

Figure 11: Typical clusters for the functions in Figure 10.
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ML4HS to Hackage packages:

• Some packages, such as warp and conduits, get no declarations to cluster.
This is because they make all of their declarations privately, e.g. in “inter-
nal” modules, then use separate modules to export the public declarations.
GHC’s renaming phase makes all references to such exports canonical, by
pointing them to the private declarations. This forces us to ignore such
declarations, as QuickSpec will not be able to access them.

• Since we do not support type-level entities, we ignore type classes. Unfor-
tunately, this also means ignoring any value-level bindings (AKA “meth-
ods”) which occur in a type class instance. Instead of being clustered,
these result in references getting frecursion features. This is especially
noticable in libraries like scientific, where only the functions for con-
structing and destructing numbers in scientific notation are clustered; all
of the arithmetic is defined in type classes. One difficulty with supporting
methods is that their namespace in Core is disjoint from that of regular
Haskell identifiers: a transformation layer would be required, along with
explicit type annotations to avoid ambiguity.

It seems like this recurrent clustering method has promise, although it will
require a more thorough exploration of the parameters to obtain more intuitively
reliable results. These clusters can then be used in several ways to perform the-
ory exploration; the most naïve way being to explore each cluster as QuickSpec
signature in its own right. ML4HS already provides this functionality, although
the lack of test generators severely limits what can be discovered.

As alluded to previously, we also have the opportunity to reason by analogy.
Similar to the work on ACL2(ml) [28], we could produce a general “scheme”
from each equation we find (either through QuickSpec or by data mining test
suites); like Isabelle approaches have shown [57], these schemes could then be
instantiated to a variety of similar values, in an attempt to find new theorems
which are analogues of existing results from a different context. “Mutating”
existing theorem statements in such a way would also increase the chance of
any result being considered interesting; since it’s likely that the unmodified
statement was deemed interesting, and the new result would not in general
follow as a simple logical consequence.

7 Future Work

Our use of clustering to pre-process QuickSpec signatures has required many
decisions and tradeoffs to be made. Hence our approach is just one possibility
out of many alternatives which could be investigated to push this work further.
In addition, there are other ways in which machine learning could aid theory
exploration besides our relevance filter technique. The Gantt chart in Figure
12 shows how these relate to the short- and long-term direction being taken by
this research. Below, we elaborate on the details, background and motivation
for these choices.
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7.1 Clustering Extensions
The most glaring omission in our algorithm is its disregard for types. By ignoring
types, not only are we losing valuable information about expressions, but we
also lose the ability to distinguish between constructors. This is because a
constructor, like True or Just, has no internal structure; it is just a token. The
distinguishing features of constructors are their types, which not only tell us
which data type they construct, but also their arity, the types of their arguments,
etc.

Our algorithm closely follows that of ML4PG, which does support types.
This is handled by populating matrix cells with tokens and their types. Unfor-
tunately this is more complicated in Haskell than it is in Coq, since types form
a separate part of the language from terms, and we do not have an interactive
Core environment to query for types (unlike ML4PG, which runs inside the
Proof General environment).

One partial solution would be leave most Core expressions without types,
but to include them for non-local identifiers (i.e. globals and constructors),
which we can look up in a database. In fact, our ML4HS framework already
includes such type information in its database, alongside the Core syntax trees.
Integrating this information into our algorithm is the next logical step.

We can also compare the performance of our hand-selected features with
learned representations, like those reviewed in [9]. This may provide an indica-
tion of how important it is to understand the language when identifying salient
aspects of expressions, and how difficult various aspects of it might be to learn.

With more expressive features, it may also be useful to experiment with more
powerful learning algorithms. An interesting possibility is to add a feedback
loop between the theory exploration phase and the clustering phase, to more
directly base the similarity of expressions on whether they (are predicted to)
occur together in equations.

7.2 Theory Exploration Extensions
Our current approach is a rather conservative change to the existing theory
exploration approaches, as it is essentially a wrapper around QuickSpec. There
is potential for more radical changes to be made, which alter the search process
itself.

7.2.1 Variable Instantiation

QuickCheck is certainly the most popular property checker for Haskell, which
motivates its use in QuickSpec to instantiate variables to random values. How-
ever, this task of finding type inhabitants has also been solved in many other
ways, which may be worth investigating in place of QuickCheck (or perhaps
even as part of an ensemble).

The SmallCheck system [69] enumerates values rather than sampling them
randomly. Whilst this does not make SmallCheck objectively “better” than
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QuickCheck, one major advantage is that it may use much less memory, as
the generated values are built up incrementally. In contrast, QuickCheck may
generate very large values; in particular, generating tree structures naïvely can
cause them to grow exponentially. For example, here is a potential generator
for RoseTrees:

genRoseTree = do f <- arbitrary
subtrees <- listOf genRoseTree
return (Node f subtrees)

The listOf genRoseTree call will return a list of arbitrary length, where
each element is generated by genRoseTree. This allows an arbitrary number of
recursive calls to be made for each invocation of genRoseTree, which will quickly
exhaust the resources of any machine. Whilst such problems may be anticipated,
or quickly spotted, in a property checking setting, this can be more difficult for
our automated approach. For example, if a type does not have a generator
available, we cannot use a library like derive to create one automatically, as it
suffers from this naïvity problem.

A relative of SmallCheck is Lazy SmallCheck [66], which uses laziness
to only produce parts of a datastructure as they are demanded. This may narrow
down our search procedures greatly, especially when predicates are involved.
QuickCheck allows predicates to restrict the values it tests with, and hence
allows conditional equations to be discovered. However, its implementation
uses a simple rejection sampling technique: values are generated just as if the
predicate were not there, and afterwards are filtered to reject any which do not
satisfy the predicate. This makes it difficult to use very specific predicates, as
it is unlikely that many of our random samples will exactly match our criteria.
On the other hand, Lazy SmallCheck will focus its search on exactly those
parts of the datastructure which are checked by the predicate, as those are the
parts being forced to evaluate. This makes it much more likely that we will
find values which satisfy the predicate, allowing us to effectively explore more
specific conditional properties.

Other approaches to generating inhabitants include Djinn [3], which uses a
decision procedure for a sub-set of Haskell types which in particular can generate
and apply functions (unlike the above tools, which generate values “bottom-up”
from constructors, and only use functions when they have been explicitly written
in a generator). MuCheck [43] is designed for mutation testing, and contains
combinators for altering functions in common ways (e.g. changing the order
of pattern match clauses); whilst not as exhaustive as the other approaches,
mutating existing values in this way is claimed to yield values which correspond
more closely to what a programmer might write. This is an interesting possi-
bility for focusing theory exploration on to more “realistic” areas of the search
space, and hence avoiding some of the more useless or bizarre expressions that
random search and enumeration may produce.

In fact, the database generated by our AstPlugin may prove helpful in
generating values, since its type information can be fed to a tool like Djinn
to discover chains of function applications for building values, which would be
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particularly useful in cases where constructors are private, like in our email
example. This is similar to the Hoogle tool, but also offers the ability to use
dependency information to avoid potentially infinite recursion.

The Core syntax trees in our database could also be used to generate theo-
ries for automated theorem provers. HipSpec currently uses the GHC API to
transform Core within its own process, however that approach suffers from the
problems described in §4.1.

7.2.2 Interestingness

If we do succeed in producing a fast theory exploration system, which chooses
productive combinations of terms and finds a large number of properties, we
encounter the problem of managing the output: finding the needles we are
interested in among the haystack of trivialities and coincidences.

This is governed by the “interestingness” criteria of the theory exploration
system: what to keep and what to discard, and even what areas of the search
space to prioritise. QuickSpec’s approach, briefly mentioned in §2.3, is very
simple: we discard equations which are direct consequences of others, and keep
all the rest. Different, and more sophisticated notions of interestingness have
been widely studied in other fields, which may be applied in the context of
theory exploration.

7.2.2.1 Concept Formation

One directly applicable area to consider is concept formation, which consid-
ers the (automatic) generation of new definitions and axioms. Unlike theory
exploration, such systems are not constrained by the requirement that their
output be provable, and hence interestingness is an important way to judge the
quality of the results.

Approaches vary, from those which are directly related to theory exploration
(such as the scheme-instantiating approach of [57], which forms part of a theory
exploration system), to others which are more closely related to theories of
human learning and discovery [62, 58]. Those based on finding patterns in data,
such as [82], may be useful in tandem with our expression database, and the
results of value generators like QuickCheck.

Since tools like HipSpec already call out to third-party automated theorem
provers, and indeed our own ML4HS system uses the external Weka program,
there may also be merit in using external concept formation or conjecture gen-
eration tools (or reimplementations of their ideas), in order to build up more
structure on top of that provided by the code we are exploring. For example,
the approaches taken by AM [45, 46], Graffiti [19, 18] and HR [16, 17] could be
used alongside those of QuickSpec.

7.2.2.2 Artificial Curiosity
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Figure 13: The Wundt curve, reproduced from [10]. The axes “hedonic value”
and “arousal potential” are described as covering “reward value. . . preference or
pleasure”, and “all the stimulus properties that tend to raise arousal, including
novelty and complexity”, respectively.

Artificial curiosity (AC) describes active learning systems which are re-
warded based on how interesting the input or data they discover is [74]. Al-
though framed in the context of reinforcement learning, this reliance on interest
is clearly relevant to our theory exploration setting.

As an unsupervised learning task, AC has no access to labels or meanings
associated with its input; the only features it can learn are the structure and
relationships inherent in the data, in a similar way to our recurrent clustering
algorithm. The unifying principle of AC methods is to force systems away from
inputs which are not amenable to learning; either because they are so familiar
that there is nothing left to learn, or so unfamiliar that they are unintelligible.
The resulting behaviour is characterised by the Wundt curve (shown in Figure
13) 12, which has been used in psychology to explain human aesthetics and pref-
erences [10]. This same behaviour may be applicable to the theorems produced
by a theory exploration system.

We can divide AC approaches into two groups: those which make explicit
use of interestingness, learning from signals which follow a Wundt curve; whilst
implicit approaches modify the output of their learning algorithm(s), to engineer
the overall system behaviour to follow a Wundt curve as an emergent property.

A framework encompassing many examples of the explicit approach is given
in [60] in the context of reinforcement learning; for comparison, many similar
measures are surveyed in a data mining context in [24]. Many more reinforce-

12In practice, many measures avoid negative values for simplicity, in which cases we replace
all negative points on the curve with zero.
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ment learning examples can be found in [37, 48, 50, 51, 65, 67, 72, 59]; whilst
more general descriptions are given in [71, 75, 52], which may be more amenable
to our theory exploration setting.

Many of these reward signals are based on information theory, with a promi-
nent example being compression progress: given a compressed representation of
our previous observations, the “progress” is the space saved if we include the
current observation. Observations which are incompressible or trivially com-
pressible don’t save any space, whilst observations which provide new insights
into the structure of past experience can provide a space saving when compressed
together. This seems particularly relevant for our problem of identifying inter-
esting theorems: those new theorems (“observations”) which shorten the proofs
of previously discovered theorems may be more general, more powerful and
therefore more interesting and hence worth keeping. In fact this is very similar
to QuickSpec’s interestingness criterion.

Another example of explicit artificial curiosity is given in [29], where world
states which cause disagreement among a population of decision trees (a ran-
dom forest [12]) are considered interesting. Since the models make stochastic
predictions, the disagreement follows a Wundt curve as the complexity of state
transitions increases: for parts of the state space which have been fully learned,
the models will agree on accurate predictions; for parts which are unlearnable,
the models cannot infer any structure, and will converge to reporting the same
average value. Whilst the latter predictions may not be accurate, they will be
in agreement, hence pushing down the interestingness of states which are too
complex.

Many examples of the implicit case are based on coevolution: rewarding
one part of the system for exploiting another part, and vice versa. In [73] a
pair of learning algorithms place virtual “bets” on the outcome of actions, and
the winner is rewarded at the expense of the loser. Due to the risk involved,
each algorithm will only bet when it is confident in its prediction, and bets will
only be actioned when each algorithm is confident in a different outcome. The
overall behaviour of this system is therefore similar to the explicit measure of
disagreement used in the random forest example. In terms of theory exploration,
such a scheme could be used to find theorems which are non-obvious, and hence
informative in some way to the user.

Another case is the “darwinian brain” of Fernando et al. [21, 22]. This
coevolves a population of problem generators and problem solvers, rewarding
the solvers based on their speed, and rewarding the generators based on the
variance of the solvers’ speed. This avoids trivial problems (which all solvers
can quickly overcome) and complex problems (which no solver can manage), and
focuses on those with the most possibility for learning. It is easy to imagine such
a general architecture being populated by conjecture generators and theorem
provers to form a theory exploration system.

7.2.2.3 Evolutionary Computation
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Coevolution is a form of evolutionary computation; an umbrella term for
heuristic search algorithms which mimic the process of evolution by natural
selection among a population of candidate solutions [4]. Whilst genetic algo-
rithms are perhaps the most well-known instance of evolutionary computation,
their use of strings to represent solutions causes complications when comparing
to a domain like theory exploration, where recursive structures of unbounded
depth arise. Thankfully these problems are not insurmountable, for example
genetic programming can operate on tree-structures natively [7], which makes
evolutionary computation a useful source of ideas for reuse in our theory explo-
ration setting (there are also precedents for using evolutionary computation in
a theorem proving domain [76]).

Traditionally, evolutionary approaches assign solutions a fitness value, using
a user-supplied fitness function. Fitness should correlate with how well a so-
lution solves the user’s problem; for example, the fitness of a solution to some
engineering problem may depend on the estimated materials cost. If we frame
the task of theory exploration in evolutionary computation terms, the fitness
function would be our interestingness measure.

Pure exploration (i.e. for its own sake) has been studied in evolutionary
computation for two main reasons: artificial life and deceptive problems. The
former attempts to gain insight into the nature of life and biology through
competition over limited resources. Whilst this may have utility in resource
allocation, e.g. efficient scheduling of a portfolio of ATP programs, there is
no direct connection to interestingness in theory exploration, so we will not
consider it further (note that similar resource-usage ideas can also be found in
the literature on artificial economies, e.g. [8]).

On the other hand, work on deceptive problems is highly relevant, as it
has lead to studying various notions of intrinsic fitness, which are analogous
to the interestingness measures we want. Deceptive problems are those where
“pursuing the objective may prevent the objective from being reached” [44],
which is caused by the fitness (objective) function having many local optima
which are easy to find (e.g. by hill climbing), but few global optima which are
hard to find. Many approaches try to avoid deception by augmenting the given
fitness function to promote diversity and novelty, such as niching methods [70].

One example is fitness sharing, which divides up fitness values between iden-
tical or similar solutions. Say we have a user-provided fitness function f , and
a population containing two identical solutions s1 and s2; hence f(s1) = f(s2).
In a fitness sharing scheme, we interpret fitness as a fixed resource, distributed
according to f ; when multiple individuals occupy the same point in the solution
space, they must share the fitness available there. We can describe the fitness
allocated to a solution by augmenting f , e.g. if we allocate fitness uniformly
between identical solutions we get:

f ′(x) =
f(x)∑n
i=1 δsix

Where n is the population size, si is the ith solution in the population and
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δ is the Kronecker delta function. In the example above, assuming there are
no other copies in the population, then f ′(s1) = f(s1)

2 = f(s2)
2 = f ′(s2). By

sharing in this way, the fitness of each solution is balanced against redundancy
in the population: there may still be many copies of a solution, but only when
the fitness is high enough to justify all of them.

There are many variations on this theme, such as sharing between “close”
solutions rather than just identical ones and judging distance based on fitness
(AKA phenotypically) rather than based on the location in solution space (AKA
genetically). Yet the underlying principle is always the same: penalise duplica-
tion in order to promote diversity. This lesson can be carried over to our theory
exploration context, where a theorem should be considered less interesting if it
is “close” to others which have been found.

In a similar way, we can bias our search procedure, rather than our fitness
function, towards diversity. The search procedure in population-based evolu-
tionary algorithms consists of selecting one or more individuals from the pop-
ulation, e.g. via truncation (select the best n individuals, discarding the rest);
then transforming the selected individuals, e.g. via mutation and crossover, to
obtain new solutions.

Traditional selection methods are biased towards high fitness individuals
(this is especially clear for truncation). Alternative schemes have been pro-
posed which favour diversity at the expense of fitness. For example, the fitness
uniform selection scheme (FUSS) [33] selects a target fitness ft uniformly from
the interval [fmin, fmax] between the highest and lowest of the population. An
individual s is then selected with fitness closest to ft, i.e. s = argmin

x
|f(x)− ft|

In this way, the fitness function f is used to assign comparable quantities to
solutions, but it is not treated as the objective; instead, the implicit objective is
to maintain a diverse population, with individuals spread out uniformly in fitness
space. This approach seems useful for informing our work in theory exploration,
as it supports search criteria which describe solutions, but which we may not
want to optimise. As a simple example, we might distinguish different forms of
theorem by measuring how balanced their syntax trees are (-1 for left-leaning,
+1 for right leaning, 0 for balanced); but it would be senseless to maximise how
far they lean.

Once we begin this process of augmenting fitness functions, or abandoning
their use as objectives, an obvious question arises: what happens if our new
function contains nothing of the original? This kind of pure exploration scenario
leads to a variety of ideas for instrinsic fitness, such as novelty [44], which can
lead to learning useful “stepping stones” even in objective-driven domains. Such
intrinsic notions of fitness are direct analogues of the interestingness measures
we seek for theory exploration.
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